
CSCI-699

Structured Probabilistic Models for Deep Learning

Lecturer: Prof. Xiang Ren Scribe: Negar Mokhberian

A structured probabilistic model is a way of describing a probability distribution, using a graph
(consisting of nodes and edges) to describe which random variables in the probability distribution
interact with each other directly. These models are often also referred to as graphical models.
In this chapter, we provide basic background on some of the most central ideas of graphical models,
with an emphasis on the concepts that have proven most useful to the deep learning research
community

1 The Challenge of Unstructured Modeling
The goal of deep learning is to become able to understand high imensional data with rich structure.
We would like AI algorithms to be able to understand natural images,1 audio waveforms repre-
senting speech, and documents containing multiple words and punctuation characters.
Classification algorithms can take an input from such a rich high-dimensional distribution and
summarize it with a categorical labelwhat object is in a photo, what word is spoken in a recording,
what topic a document is about. The process of classification discards most of the information
in the input and produces a single output (or a probability distribution over values of that single
output). It is possible to ask probabilistic models to do many other tasks. These tasks are often
more expensive than classification. These tasks include the following:

• Density estimatin: given an input x, the machine learning system returns an estimate of the
true density p(x) under the data generating distribution. This requires only a single output,
but it does require a complete understand- ing of the entire input. If even one element of the
vector is unusual, the system must assign it a low probability.

• Denoising: given a damaged or incorrectly observed input x , the machine learning system
returns an estimate of the original or correct x. For example, the machine learning system
might be asked to remove dust or scratches from an old photograph. This requires multiple
outputs (every element of the estimated clean example x) and an understanding of the entire
input (since even one damaged area will still reveal the final estimate as being damaged).

• Missing value imputation: given the observations of some elements of x, the model is
asked to return estimates of or a probability distribution over some or all of the unobserved
elements of x. This requires multiple outputs. Because the model could be asked to restore
any of the elements of x, it must understand the entire input.

1

• Sampling: the model generates new samples from the distribution p(x). Applications in-
clude speech synthesis, i.e. producing new waveforms that sound like natural human speech.
This requires multiple output values and a good model of the entire input. If the samples have
even one element drawn from the wrong distribution, then the sampling process is wrong.

If we wish to model a distribution over a random vector x containing n discrete variables capable
of taking on k values each, then the naive approach of representing p(x) by storing a lookup table
with one probability value per possible outcome requires kn parameters. This is not feasible for
several reasons:

• Memory: The cost of storing the representation: Unless n and k are very small, representing
the distribution as a table will require too many values to store.

• Statisticall Efficiency: As the number of parameters in a model increases, because the table-
based model has an astronomical number of parameters, it will require an astronomically
large training set to fit accurately.

• Runtime (he cost of inference): For performing inference tasks like computing the marginal
distribution P (x1) or the conditional distribution P (x2|x1) using our model of the joint dis-
tribution P (x), we need to sum up across the entire table. The runtime of these operations
is as high as the intractable memory cost of storing the model.

• Runtime (the cost of sampling): Suppose we want to draw a sample from the model. The
naive way to do this is to sample some value u ∼ U(0, 1), then iterate through the table,
adding up the probability values until they exceed u and return the outcome corresponding
to that position in the table. This requires reading through the whole table in the worst case,
which has an exponential cost.

The problem with the table-based approach is that we are explicitly modeling every possible kind
of interaction between every possible subset of variables. The probability distributions we en-
counter in real tasks are much simpler than this. Usually, most variables influence each other only
indirectly.
Consider modeling the finishing times of a team in a relay race. Suppose the team consists of three
runners: Alice, Bob and Carol. At the start of the race, Alice begins running around a track and af-
ter completing her lap around the track, Bob runs his own lap and then Carol runs the final lap. We
can model each of their finishing times as a continuous random variable. Alices finishing time does
not depend on anyone elses, since she goes first. Bobs finishing time depends on Alices, because
Bob does not have the opportunity to start his lap until Alice has completed hers. Carols finishing
time depends on both her teammates. However, Carols finishing time depends only indirectly on
Alices finishing time via Bobs. If we already know Bobs finishing time, we will not be able to
estimate Carols finishing time better by finding out what Alices finishing time was. This means
we can model the relay race using only two interactions: Alices effect on Bob and Bobs effect on
Carol. We can omit the third, indirect interaction between Alice and Carol from our model.
Structured probabilistic models provide a formal framework for modeling only direct interactions
between random variables. This allows the models to have significantly fewer parameters and
therefore be estimated reliably from less data.

2

2 Using Graphs to Describe Model Structure
Structured probabilistic models use graphs to represent interactions between random variables.
Each node represents a random variable. Each edge represents a direct interaction. These direct
interactions imply other, indirect interactions, but only the direct interactions need to be explicitly
modeled.
In the following sections we describe two categories of graphical models: models based on directed
acyclic graphs, and models based on undirected graphs.

2.1 Directed Models
One kind of structured probabilistic model is the directed graphical model, otherwise known as
the belief network or Bayesian networ. that is, they point from one vertex to another. Drawing an
arrow from a to b means the distribution over b depends on the value of a.

Continuing with the relay race example, suppose we name Alice’s, Bob’s and Carol’s finishing
times respectively t0, t1 and t2. As we saw earlier, our estimate of t1 depends on t0. Our estimate
of t2 depends directly on t1 but only indirectly on t0. We can draw this relationship in a directed
graphical model, illustrated in figure 1.
Formally, a directed graphical model defined on variables x is defined by a directed acyclic graph
G whose vertices are the random variables in the model, and a set of local conditional probability
distributions p(xi|PaG(xi)) where PaG(xi) gives the set of parents of xi in G. The probability
distribution over x is given by

P (x) =
∏
i

p(xi|PaG(xi)) (1)

In our relay race example, this means that, using the graph drawn in figure 1,

p(t0, t1, t2) = p(t0)p(t1|t0)p(t2|t1). (2)

Figure 1: A directed graphical model depicting the relay race example.

We can examine the cost of using a structured probabilistic model over unstructured modeling.
Suppose we represented time by discretizing time ranging from minutes 0 to 10 into 6 second
chunks. This would give 100 possible values for each variable. If we attempted to represent
p(t0, t1, t2) with a table, it would need to store 999,999 values.
If instead, we only make a table for each of the conditional probability distributions, then the

3

distribution over t0 requires 99 values, the table defining t1 given t0 requires 9900 values, and so
does the table defining t2 given t1. This comes to a total of 19,899 values. This means that using
the directed graphical model reduced our number of parameters by a factor of more than 50!
In general, to model n discrete variables each having k values, the cost of the single table approach
scales like O(kn), as we have observed before. Now suppose we build a directed graphical model
over these variables. If m is the maximum number of variables appearing (on either side of the
conditioning bar) in a single conditional probability distribution, then the cost of the tables for the
directed model scales like O(km). As long as we can design a model such that m << n, we get
very dramatic savings. In other words, so long as each variable has few parents in the graph, the
distribution can be represented with very few parameters.

2.2 Undirected Models
Another popular language is that of undirected models, otherwise known as Markov random fields
(MRFs) or Markov networks [1].

Not all situations we might want to model have such a clear direction to their interactions.
When the interactions seem to have no intrinsic direction, or to operate in both directions, it may
be more appropriate to use an undirected model.

As an example of such a situation, suppose we want to model a distribution over three binary
variables: whether or not you are sick, whether or not your coworker is sick, and whether or
not your roommate is sick represented by hy, hc and hr. Assuming that your coworker and your
roommate do not know each other, it is very unlikely that one of them will give the other an
infection directly. However, it is reasonably likely that either of them could give you a cold, and
that you could pass it on to the other. We can model the indirect transmission of a cold from
your coworker to your roommate by modeling the transmission of the cold from your coworker
to you and the transmission of the cold from you to your roommate. See figure 2 for the drawing
representing this scenario. Unlike directed models, the edge in an undirected model has no arrow,
and is not associated with a conditional probability distribution.

Figure 2: An undirected graph representing how your roommates health, your health, and your
work colleague’s health affect each other.

Formally, an undirected graphical model is a structured probabilistic model defined on an undi-
rected graph G. For each clique C in the graph, a factor ϕ(C) (also called a clique potential)
measures the affinity of the variables in that clique for being in each of their possible joint states.
The factors are constrained to be non-negative. Together they define an unnormalized probability

4

distribution
p̃(x) =

∏
C∈G

ϕ(C) (3)

See figure 3 for an example of reading factorization information from an undirected graph.
Our example of the cold spreading between you, your roommate, and your colleague contains two
cliques. One clique contains hy and hc. The factor for this clique can be defined by a table, and
might have values resembling these:

hy = 0 hy = 1
hc = 0 2 1
hc = 1 1 10

To complete the model, we would need to also define a similar factor for the clique containing
hy and hr.

Figure 3: This graph implies that p(a, b, c, d, e, f) can be written as
1
Z
ϕ(a,b)(a, b)ϕ(b,c)(b, c)ϕ(a,d)(a, d)ϕ(b,e)(b, e)ϕ(e,f)(e, f) for an appropriate choice of the ϕ

functions.

2.3 The Partition Function
While the unnormalized probability distribution is guaranteed to be non-negative everywhere, it is
not guaranteed to sum or integrate to 1. To obtain a valid probability distribution, we must use the
corresponding normalized probability distribution:

p(x) =
1

Z
p̃(x) (4)

where Z is the value that results in the probability distribution summing or integrating to 1:

Z =

∫
p̃(x)dx (5)

You can think of Z as a constant when the ϕ functions are held constant. The normalizing constant
Z is known as the partition function, a term borrowed from statistical physics.

5

Since Z is an integral or sum over all possible joint assignments of the state x it is often intractable
to compute. Hence, we must resort to approximations.
When designing undirected models, it is possible to specify the factors in such a way that Z does
not exist. This happens if some of the variables in the model are continuous and the integral of p̃
over their domain diverges. For example, suppose we want to model a single scalar variable x ∈ R
with a single clique potential ϕ(x) = x2. In this case

Z =

∫
x2dx (6)

2.4 Energy-Based Models
Many interesting theoretical results about undirected models depend on the assumption that ∀x, p̃(x) >
0. A convenient way to enforce this condition is to use an energy-based model (EBM) where

p̃(x) = exp(−E(x)) (7)

and E(x) is known as the energy function. Being completely free to choose the energy function
makes learning simpler. If we learned the clique potentials directly, we would need to use con-
strained optimization to arbitrarily impose some specific minimal probability value. By learning
the energy function, we can use unconstrained optimization. The probabilities in an energy-based
model can approach arbitrarily close to zero but never reach it.

Any distribution of the form given by equation 16.7 is an example of a Boltz- mann distribution.
For this reason, many energy-based models are called Boltzmann machines.

Cliques in an undirected graph correspond to factors of the unnormalized probability function.
Because exp(a)exp(b) = exp(a + b), this means that different cliques in the undirected graph
correspond to the different terms of the energy function.See figure 4 for an example of how to read
the form of the energy function from an undirected graph structure. One can view an energy-based
model with multiple terms in its energy function as being a product of experts.

Figure 4: This graph implies that E(a, b, c, d, e, f) can be written as Ea,b(a, b) + Eb,c(b, c) +
Ea,d(a, d) + Eb,e(b, e) + Ee,f (e, f) for an appropriate choice of the per-clique energy functions.

6

2.5 Separation and D-Separation
In the case of undirected models, conditional independence implied by the graph is called separa-
tion. We say that a set of variables A is separated from another set of variables B given a third set
of variables S if the graph structure implies that A is independent from B given S. If two variables
a and b are connected by a path involving only unobserved variables, then those variables are not
separated. If no path exists between them, or all paths contain an observed variable, then they are
separated. We refer to paths involving only unobserved variables as "active" and paths including
an observed variable as "inactive".

Similar concepts apply to directed models, except that in the context of directed models, these
concepts are referred to as d-separation. The "d" stands for "dependence." D-separation for directed
graphs is defined the same as separation for undirected graphs.

It is important to remember that separation and d-separation tell us only about those conditional
independences that are implied by the graph.

There is no requirement that the graph imply all independences that are present. For example,
consider a model of three binary variables: a, b and c. Suppose that when a is 0, b and c are
independent, but when a is 1, b is deterministically equal to c. Encoding the behavior when a = 1
requires an edge connecting b and c. The graph then fails to indicate that b and c are independent
when a = 0.

2.6 Converting between Undirected and Directed Graphs
Directed models and undirected models both have their advantages and disad- vantages.We may
choose to use either directed modeling or undirected modeling based on which approach can cap-
ture the most independences in the probability distribution or which approach uses the fewest
edges to describe the distribution. We may sometimes switch between different modeling lan-
guages. Sometimes a different language becomes more appropriate if we observe a certain subset
of variables, or if we wish to perform a different computational task.

How to show a probability distribution using complete graph

• Undirected: a graph containing a single clique encompassing all of the variables.

• Directed: any directed acyclic graph where we impose some ordering on the random vari-
ables.

To convert a directed model with graph D into an undirected model, we need to create a new
graph U. For every pair of variables x and y, we add an undirected edge connecting x and y to U if
there is a directed edge (in either direction) connecting x and y in D or if x and y are both parents
in D of a third variable z. The resulting U is known as a moralized graph.

To convert a undirected model with graph U into a directed model, if we have a loop with length
of four or more, we need to add an edge between any connection between any two non-consecutive
variables in the sequence defining the loop (this is the definition of chord). To finish the conversion
process, we must assign a direction to each edge. When doing so, we must not create any directed

7

Figure 5: All of the kinds of active paths of length two that can exist between random variables a
and b. (a)Any path with arrows proceeding directly from a to b or vice versa. This kind of path
becomes blocked if s is observed. We have already seen this kind of path in the relay race example.
(b)a and b are connected by a common cause s. For example, suppose s is a variable indicating
whether or not there is a hurricane and a and b measure the wind speed at two different nearby
weather monitoring outposts. If we observe very high winds at station a, we might expect to also
see high winds at b. This kind of path can be blocked by observing s. If we already know there
is a hurricane, we expect to see high winds at b, regardless of what is observed at a. A lower than
expected wind at a (for a hurricane) would not change our expectation of winds at b (knowing there
is a hurricane). However, if s is not observed, then a and b are dependent, i.e., the path is active.
(c)a and b are both parents of s. This is called a V-structure or the collider case. The V-structure
causes a and b to be related by the explaining away effect. In this case, the path is actually active
when s is observed. For example, suppose s is a variable indicating that your colleague is not at
work. The variable a represents her being sick, while b represents her being on vacation. If you
observe that she is not at work, you can presume she is probably sick or on vacation, but it is not
especially likely that both have happened at the same time. If you find out that she is on vacation,
this fact is sufficient to explain her absence. You can infer that she is probably not also sick. (d)The
explaining away effect happens even if any descendant of s is observed! For example, suppose that
c is a variable representing whether you have received a report from your colleague. If you notice
that you have not received the report, this increases your estimate of the probability that she is not
at work today, which in turn makes it more likely that she is either sick or on vacation. The only
way to block a path through a V-structure is to observe none of the descendants of the shared child.

cycles. One way to avoid directed cycles is to impose an ordering over the nodes, and always
point each edge from the node that comes earlier in the ordering to the node that comes later in the
ordering.

8

Figure 6: Converting a directed model to undirected

2.7 Factor Graphs
Factor graphs are another way of drawing undirected models that resolve an ambiguity in the
graphical representation of standard undirected model syntax. In an undirected model, the scope
of every ϕ function must be a subset of some clique in the graph. Ambiguity arises because it is
not clear if each clique actually has a corresponding factor whose scope encompasses the entire
clique. Factor graphs resolve this ambiguity by explicitly representing the scope of each factor
ϕ of the unnormalized probability function drawn as squares. Other nodes correspond to random
variables and are drawin with as circles. A variable and a factor are connected in the graph if
and only if the variable is one of the arguments to the factor in the unnormalized probability
distribution. No factor may be connected to another factor in the graph, nor can a variable be
connected to a variable. See figure 7 for an example of how factor graphs can resolve ambiguity in
the interpretation of undirected networks.

Figure 7: An example of how a factor graph can resolve ambiguity in the interpretation of undi-
rected networks. (Left)An undirected network with a clique involving three variables: a, b and c.
(Center)A factor graph corresponding to the same undirected model. This factor graph has one
factor over all three variables. (Right)Another valid factor graph for the same undirected model.
This factor graph has three factors, each over only two variables.

9

3 Sampling from Graphical Models
One advantage of directed graphical models is that a simple and efficient proce- dure called ances-
tral sampling can produce a sample from the joint distribution represented by the model.
The basic idea is to sort the variables xi in the graph into a topological ordering, so that for all i
and j, j is greater than i if xi is a parent of xj . The variables can then be sampled in this order.
We first sample x1 ∼ P (x1), then sample P (x2|PaG(x2)), and so on, until finally we sample
P (xn|PaG(xn)). The topological sorting operation guarantees that we can read the conditional
distributions in equation 16.1 and sample from them in order.
Ancestral sampling is generally very fast and convenient.

drawbacks of ancestral sampling:
• It only applies to directed graphical models.

• It does not support every conditional sampling operation

• It is applicable only to directed models. Sampling from an undirected model without first
converting it to a directed model requires resolving cyclical dependencies (The simplest
approach is Gibbs sampling).

4 Advantages of Structured Modeling
The primary advantage of using structured probabilistic models is that they allow us to dramat-
ically reduce the cost of representing probability distributions as well as learning and inference.
Sampling is also accelerated in the case of directed models, while the situation can be complicated
with undirected models.
A less quantifiable benefit of using structured probabilistic models is that they allow us to explic-
itly separate representation of knowledge from learning of knowledge or inference given existing
knowledge. This makes our models easier to develop and debug.

5 Learning about Dependencies
A good generative model needs to accurately capture the distribution over the observed or "visible"
variables v. Often the different elements of v are highly dependent on each other. In the context
of deep learning, the approach most commonly used to model these dependencies is to introduce
several latent or "hidden" variables, h. The model can then capture dependencies between any pair
of variables vi and vj indirectly, via direct dependencies between vi and h, and direct dependencies
between h and vj .

A good model of v which did not contain any latent variables would need to have very large
numbers of parents per node in a Bayesian network or very large cliques in a Markov network.

An entire field of machine learning called structure learning is devoted to this problem For a
good reference on structure learning, see [2]. Most structure learning techniques are a form of
greedy search.

10

Using latent variables instead of adaptive structure avoids the need to perform discrete searches
and multiple rounds of training. A fixed structure over visible and hidden variables can use direct
interactions between visible and hidden units to impose indirect interactions between visible units.
Using simple parameter learning techniques we can learn a model with a fixed structure that im-
putes the right structure on the marginal p(v).

6 Inference and Approximate Inference
One of the main ways we can use a probabilistic model is to ask inference problems in which we
must predict the value of some variables given other variables, or predict the probability distribu-
tion over some variables given the value of other variables. For example given a set of medical
tests, we can ask what disease a patient might have. In a latent variable model, we might want to
extract features E[h|v] describing the observed variables.
We often train our models using the principle of maximum likelihood. Because

log p(v) = Eh∼p(h|v)[log(p(h, v)− log(p(h|v))] (8)

We often want to compute p(h|v) in order to implement a learning rule. All of these are examples
of inference problems.
Unfortunately, for most interesting deep models, these inference problems are intractable, even
when we use a structured graphical model to simplify them. This motivates the use of approximate
inference. In the context of deep learning, this usually refers to variational inference, in which we
approximate the true distribution p(h|v) by seeking an approximate distribution q(h|v) that is as
close to the true one as possible.

7 The Deep Learning Approach to Structured Probabilistic Mod-
els

We can think of a latent variable hi as being at depth j if the shortest path from hi to an observed
variable is j steps. We usually describe the depth of the graphical model as being the greatest depth
of any such hi.

The differences between deep learning and traditional graphical models are as follows:

• Deep learning models typically have more latent variables than observed variables. Com-
plicated nonlinear interactions between variables are accomplished via indirect connections
that flow through multiple latent variables. By contrast, traditional graphical models usually
contain mostly variables that are at least occasionally observed.

• Deep learning practitioner typically does not intend for the latent variables to take on any
specific semantics ahead of time, that’s why the laten variables are usually not very easy for
a human to interpret, however When latent variables are used in the context of traditional
graphical models, they are often designed with some specific semantics in mind.

11

• Deep graphical models typically have large groups of units that are all connected to other
groups of units and the interactions between these two groups is described using a single
matrix. On the other hand, traditional graphical models have very few connections and the
choice of connections for each variable may be individually designed which depends on
choice of inference algorithm. Traditional approaches to graphical models typically aim to
maintain the tractability of exact inference. When this constraint is too limiting, a popular
approximate inference algorithm is an algorithm called loopy belief propagation.

• One of the most striking differences between the larger graphical models community and
the deep graphical models community is that loopy belief propagation is almost never used
for deep learning, because in deep learning we mostly use distributed representation which
has the disadvantage of usually yielding graphs that are not sparse enough for the traditional
techniques.

• The deep learning approach is often to figure out what the minimum amount of information
we absolutely need is, and then to figure out how to get a reasonable approximation of that
information as quickly as possible, rather than simplifying the model until all quantities we
might want can be computed exactly.

The restricted Boltzmann machine The restricted Boltzmann machine (RBM) [3] or harmo-
nium is the quintessential example of how graphical models are used for deep learning. The RBM
is not itself a deep model. Instead, it has a single layer of latent variables that may be used to learn
a representation for the input.

Its units are organized into large groups called layers and the connectivity is described as a
single matrix. The model is designed to allow efficient Gibbs sampling, and learn latent variables
whose semantics were not specified by the designer.

Figure 8: An RBM drawn as a Markov network

As this figure makes clear, an important aspect of this model is that there are no direct interac-
tions between any two visible units or between any two hidden units (hence the restricted, a general
Boltzmann machine may have arbitrary connections)

Overall, the RBM demonstrates the typical deep learning approach to graph- ical models: rep-
resentation learning accomplished via layers of latent variables, combined with efficient interac-
tions between layers parametrized by matrices.

12

References
[1] R. Kindermann. Markov random fields and their applications. American mathematical society,

1980.

[2] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[3] T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood
gradient. In Proceedings of the 25th international conference on Machine learning, pages
1064–1071. ACM, 2008.

13

