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1 Introduction

Recent years have witnessed an increasing demand for conversational Question Answering (QA)
agents that allow users to query a large-scale Knowledge Base (KB) or a document collection in
natural language. The former is known as KB-QA agents and the latter text-QA agents. In the next
section, we will follow the line of a review of KB -> symbolic approaches to KB-QA based on
semantic parsing -> multi-step reasoning on KB -> review some KB-QA datasets developed recently.

Then we will talk about text-QA. The heart of it is a neural Machine Reading Comprehension
(MRC) model that generates an answer to an input question. The guideline will be: reviewing some
MRC datasets -> MRC models -> analysis of these methods -> new datasets addressing the existing
problems.

2 Knowledge Base and KB-QA

Review KB. Organizing the world’s facts and storing them in a structured database, large scale
Knowledge Bases (KB) like DBPedia, Freebase and Yago have become important resources for
supporting open-domain QA.

A typical KB consists of a collection of subject-predicate-object triples (s, r, t) where s, t are entities
and r is a predicate or relation. A KB in this form is often called a knowledge graph due to its
graphical representation.

Semantic Parsing for KB-QA. Most state-of-the-art symbolic approaches to KB-QA are based
on semantic parsing, where a question is mapped to its formal meaning representation (e.g., logical
form) and then translated to a KB query. The answers to the question can then be obtained by finding
a set of paths in the KB that match the query and retrieving the end nodes of these paths.

We take the example used in Yih et al. [2015] to illustrate the QA process. Figure 1(right) shows the
logical form in λ−calculus and its equivalent graph representation. The query graph is grounded in
Freebase.

A symbolic KB-QA system to a very large KB is challenging for two reasons:

• Paraphrasing in natural language: We need to measure how likely the predicate used in
the question matches that in the Freebase, such as “who first voiced Meg on Family Guy” vs.
“cast-actor”. Embedding-based methods are proposed to solve this problem. The bilinear
model in Yang et al. [2014], Nguyen [2017] is one of the basic KB embedding models. It
learns a vector xe for each entity e and a matrix Wr for each relation. The model scores
how likely a triple (s, r, t) holds using score(s, r, t; θ) = xTsWrxt. The loss is defined as
L(θ) =

∑
(γ + score(x−; θ − score(x+; θ))). Interested users are referred to Nguyen

[2017] for a detailed survey of embedding models for KBC.
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Figure 1: An example of semantic parsing for KB-QA. (Left) A subgraph of Freebase related to the
TV show Family Guy. (Right) A question, its logical form in λ-calculus and query graph, and the
answer.

Figure 2: An overview of the neural methods for KBR (Shen et al., 2017a; Yang et al., 2017a). The
KB is embedded in neural space as matrix M that is learned to store compactly the connections
between related triples (e.g., the relations that are semantically similar are stored as a cluster). The
controller is designed to adaptively produce lookup sequences in M and decide when to stop.

• Search complexity. Searching all possible multi-step relation paths that match complex
queries is expensive. We will introduce more about traversing the query-matched paths in a
KB to find the answers.

Multi-Step Reasoning on KB. To reason over a KB, for each relation r, we are interested in
learning a first-order logical rules. Given the question “What is citizenship of Obama?” its translated
KB query is (Obama, citizenship, ?), a multi-step reasoning is needed to deduce the answer from
the paths that contain relevant triples, such as (Obama, born-in, Hawaii) and (Hawaii, part-of, USA),
using the learned relational paths such as (born-in, part-of). There are three categories of multi-step
KBR methods. They differ in whether reasoning is performed in a discrete symbolic space or a
continuous space.

• Symbolic methods. The path ranking algorithm [Lao et al., 2011] is one of the primary
symbolic approaches to learning relational paths in large KBs. During KBR, given a query
q=(s,r,?), PRA selects the set of relational paths for r, denoted by π1, π2, ..., then traverse the
KB according to the KB according to the query and path, and scores each candidate answer
t using a linear model score(q, t) =

∑
λπP (t|s, π), where λpi are the learned weights.
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Figure 3: The examples from two conversational KB-QA datasets. (Left) An example question
sequence created from a compositional question intent in the SQA dataset. (Right) An example
dialogue from the CSQA dataset.

Because PRA operates in a fully discrete space, it not only hurts generalization but makes
reasoning expensive.

• Neural Methods. Implicit ResoNet(IRN) and Neural Logic Programming are proposed to
perform multi-step KBR in a neural space. The basic structure is shown in

• Reinforcement Learning based Methods. DeepPath, MINERVA and M-Walk are among
the state-of-the-art methods that use RL for multi-step reasoning over a KB. They use a
policy-based agent with continuous states to traverse the knowledge graph to identify the
answer node for an input query.

Datasets. Sequential Question Answering [Iyyer et al., 2017] is collected via crowdsourcing by
leveraging WikiTableQuestions(WTQ), which contains highly compositional questions associated
with HTML tables from Wikipedia. The workers are asked to compose a sequence of simpler but
inter-related questions that lead to the final intent. The answers to the simple questions are subsets of
the cells in the table as shown in the left side of Figure 3.

Saha et al. [2018] presented a dataset consisting of 200K QA dialogues for the task of complex
sequential question answering as shown in the right side of Figure 3.

3 Machine Reading for Text-QA

Machine Reading Comprehension (MRC) is a challenging task: the goal is to have machines read a
(set of) text passage(s) and then answer any question about the passage(s).

The recent big progress on MRC is largely due to the availability of a multitude of large-scale datasets
that the research community has created over various text sources such as Wikipedia (WikiReading
(Hewlett et al., 2016), SQuAD (Rajpurkar et al., 2016), WikiHop (Welbl et al., 2017), DRCD (Shao
et al., 2018)), news and other articles (CNN/Daily Mail (Hermann et al., 2015), NewsQA (Trischler
et al., 2016), RACE (Lai et al., 2017), ReCoRD (Zhang et al., 2018)), fictional stories (MCTest
(Richardson et al., 2013), CBT (Hill et al., 2015), science questions (ARC (Clark et al., 2018)), and
general Web documents (MS MARCO (Nguyen et al., 2016), TriviaQA (Joshi et al., 2017), SearchQA
(Dunn et al., 2017), DuReader (He et al., 2017b), QAngaroo [Welbl et al., 2018], HotpotQA [Yang
et al., 2018] and etc. HotpotQA is getting more attention because the pervious datasets have some
limits:

• In SQuAD questions are designed to be answered given a single paragraph as the context,
and most of the questions can be answered by matching the question with a single sentence
in that paragraph.

• TrivaQA and SearchQA collect multiple documents to from the context. However, most of
the questions can be answered by matching the question with a few nearby sentences in one
single paragraph, which is limited as it does not require more complex reasoning.
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Figure 4: The examples from two MRC datasets. (Left) Question-answer pairs for a sample passage
in the SQuAD dataset. (Right)An example of the multi-hop questions in HOTPOTQA. They also
highlight the supporting facts in blue italics, which are also part of the dataset.

• Target multi-hop reasoning: QAngaroo and COMPLEXWEBQUESTIONS are constructed
using existing knowledge bases, and thus are constrained by the schema of KBs they use.

• All of above datasets only provide distant supervision, i.e., the systems only know the what
the answer is, but do not know what the leading facts.

4 MRC Models and Analysis

Given a question Q = (q1, ..., qI) and a passage P = (p1, ..., pJ), we need to locate an answer span
A = (astart, aend) in P . Most Neural MRC models encode questions and passages through three
layers: a lexicon embedding layer, a contextual embedding layer, and an attention layer, as reviewed
below.

Lexicon Embedding Layer. This extracts information from Q and P at the word level and nor-
malizes for lexical variants. It typically maps each word to a vector space using a pre-trained word
embedding model, such as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014), such
that semantically similar words are mapped to the vectors that are close to each other in the neural
space.

Contextual Embedding Layer. This utilizes contextual cues from surrounding words to refine the
embedding of the words. As a result, the same word might map to different vectors in a neural space
depending on its context, such as “bank of a river” vs. “ bank of America”. This is typically achieved
by using a Bi-directional Long Short-Term Memory (BiLSTM) network.

ELMo [Peters et al., 2018] is one of the state of the art contextual embedding models. It is based on
deep BiLSTM. Instead of using only the output layer representations of BiLSTM, ELMo combines
the intermediate layer representations in the BiLSTM, where the combination weights are optimized
on task-specific training data.

BERT [Devlin et al., 2019] differs from ELMo and BiLSTM in that it is designed to pre-train deep
bidirection representations by jointly conditioning on both left and right context in all layers. The
pre-trained BERT representations can be fine-tuned with just one additional output layer to create
state of the art models for a wide range of NLP tasks, including MRC.

Attention Layer. Attention has been a highly successful neural network component. It is naturally
interpretable because an attention weight has a clear meaning: how much a particular word will be
weighted when computing the next representation for the current word.
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Figure 5: Left: an example of a data point from the Argument Reasoning Comprehension Task; Right:
Results of probing experiments with BERT, and the BoV and BiLSTM baselines. These results
indicate that BERT’s peak 77% performance can be entirely accounted for by exploiting spurious
cues.By just considering warrants (W) we can get to 71%.

Figure 6: Examples of sentences used to test the three heuristics. A model relying on the heuristics
would label all examples as entailment.

5 BERT is still not smart

Introduce GLUE. Wang et al. [2018] introduced a battery of nine reading-comprehension tasks
for computers called GLUE (General Language Understanding Evaluation). The test was designed as
a fairly representative sample of what the research community thought were interesting challenges,
but pretty straightforward for humans. For example, one task asks whether a sentence is true based
on information offered in a preceding sentence. If you can tell that “President Trump landed in Iraq
for the start of a seven-day visit” implies that “President Trump is on an overseas visit,” you’ve just
passed. Before BERT, the highest score was 69, while BERT scores 80 six months later.

BERT is just learning spurious statistical cues? Niven and Kao [2019] used BERT to achieve
an impressive result on a relatively obscure natural language understanding benchmark called the
argument reasoning comprehension task. But instead of concluding that BERT could apparently
imbue neural networks with near-Aristotelian reasoning skills, they suspected a simpler explanation:
that BERT was picking up on superficial patterns in the way the warrants were phrased. Indeed, after
re-analyzing their training data, the authors found ample evidence of these so-called spurious cues.
For example, simply choosing a warrant with the word “not” in it led to correct answers 61% of
the time. After these patterns were scrubbed from the data, BERT’s score dropped from 77 to 53 —
equivalent to random guessing.
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Right for the wrong reasons? McCoy et al. [2019] published evidence that BERT’s high perfor-
mance on certain GLUE tasks might also be attributed to spurious cues in the training data for those
tasks. By changing the heuristics [HANS dataset], the performance of BERT and other methods
decrease dramatically. BERT gets near-perfect accuracy when the true label is entailment, and
near-zero accuracy when the true label is non-entailment.

Deep models such as BERT do not demonstrate robust commonsense reasoning ability by themselves.
Instead, they operate more like rapid surface learners By themselves.

Encourage robust understanding. One way to encourage progress toward robust understanding
is to focus not just on building a better BERT, but also on designing better benchmarks and training
data that lower the possibility of Clever Hans–style cheating. Zellers et al. [2019] use Adversarial
Filtering to produce a challenging dataset called HelloSwag. On each iteration, a new classifier is
trained on a dummy training set to replace easily-classified negative endings on the dummy test set
with adversarial endings.

Wang et al. [2019] recently introduced a test called SuperGLUE specifically designed to be hard for
BERT-based systems. So far, no neural network can beat human performance on it.

There is also research [Clark et al., 2019] understanding what BERT’s attention looks at. The authors
find that early heads attend to [CLS], middle heads attend to [SEP], and deep heads attend to periods
and commas. Often more than half of a head’s total attention is to these tokens. Attention heads in
the same layer tend to behave similarly.

Conclusion. As Sam Bowman said, who came up with GLUE in the first place, “we are defi-
nitely in an era where the goal is to keep coming up with harder problems that represent language
understanding, and keep figuring out how to solve those problems”.
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