
TOWARD UNDERSTANDING TRANSFORMER BASED SELF
SUPERVISED MODEL

Yizhou Zhang
zhangyiz@usc.edu

November 12, 2019

1 Introduction

Knowledge Base Question Answering (KB-QA) refers to benefit Question Answering (QA) systems by making use
of information from a knowledge base, which contains facts that are usually summarized as triplets manually or
automatically. This task is confronted of two major challenges: encoding or representing information from triplets in a
knowledge base, and the reasoning based on the extracted information. For the former challenge, recent works try to
handle it via new neural network architectures for the representation on graphs, like Gated Graph Neural Network. For
the latter challenge, recent works proposed different frameworks. One of them is considering reasoning on a Knowledge
Base as sequential decision and trained a model to handle it with reinforcement learning algorithm. Another framework
is to use complicated bidirectional attention mechanism and enhancing module to integrate the reasoning process into
the representation learning model.

2 Task Formulation and Datasets

2.1 Knowledge Base

Let E denote a set of entities andR denote a set of binary relations. Typical Knowledge Bases, like Freebase KB [1],
are usually collections of facts stored as triplets (e1, r, e2) where e1, e2 ∈ E and r ∈ R. e1 is also known as triplet head
while e2 is known as triplet tail. Note that a Knowledge Base can be represented as a knowledge graph G = (V,E,R),
where V = E and E are the vertices and directed edges of different types in the graph andR is the type space of edges.

Besides, some Knowledge Bases can also contain ternary relations, even though they store facts through triplets. For
example, in Wikidata, the head entity of a triplet can be another triplet, like ((e1, r1, e2), r2, e3).

Currently, Freebase, WordNet and Wikidata are the most popular Knowledge Base in many different downstream
tasks. Based on the data from them, a lot of benchmark of different scale are constructed, like FB15K and WN18 for
knowledge graph embedding.

2.2 Question Answering on Knowledge Base

Generally, on a Knowledge Base, there are two kinds of QA: Query Answering and Question Answering. In Query
Answering, the query to be answered are usually structured and can be easily transformed to be a reasoning problem on
a Knowledge Graph. This task is very meaningful because most of Knowledge Bases suffer from link missing. Figure 1
shows an example of Query Answering on Knowledge Base, where the relation between ’David Beckham’ and ’Cruz
Beckham’ is missing. To answer such a query related to missing direct relation, a model must have reasoning ability on
Knowledge Base, while it does not have to understand natural language as queries are usually organized structurally.

On the contrary, the Question Answering on Knowledge Base usually requires both reasoning ability and natural
language understanding ability, because the question in it are usually unstructured sentence of natural language. Figure
2 shows a toy example of Question Answering. As natural language question may contain multiple constraint to the
final answer as shown in the example, it’s challenging to represent them and map them to the corresponding triplets in

November 12, 2019

Figure 1: A toy example of query answering on a knowledge graph

Figure 2: A toy example of question answering on a knowledge graph

Knowledge Base. An intuitive solution is to transform the question to structured query. However, transforming natural
language to query is challenging due to a lot of problems like word and entity ambiguation.

Above two tasks have different benchmarks. The benchmarks for Query Answering are usually some tail prediction
datasets on Knowledge Base, like FB15K and WN18. And the benchmarks for Question Answering are some natural
language questions. Among them, WebQuestions[2]1 and its subsets are very popular. Besides, researcher also
use some special datasets to evaluate the model, like ComplexQuestions which consists of a lot of questions with
complicated constraint.

3 Knowledge Representation

The representation of Knowledge Base is especially challenging for Question Answering. Because most of popular
Knowledge Graph representation learning models, like TransE, DistMult and RotatE are for general purpose and deal
with the whole graph without specific attention to the content of question, their results are not applicable for Question
Answering due to serious noise. Therefore, dedicated representation model for this task is required.

1nlp.stanford.edu/software/sempre

2

November 12, 2019

Figure 3: A toy example of semantic graph. The left figure is the semantic graph of a question: "What is the first album
of Taylor Swift?" And the right figure shows three candidate semantic graphs of the question, where all candidate
answers q are related to "Taylor Swift" with different relation.

3.1 Candidate Graph

A recent method of generating knowledge representation in light of question is to extract a set of candidate graphs
from the Knowledge Base for the question. Figure 3 shows an example, which is a kind of candidate graph, named
semantic graph, proposed by [3]. There are also other kinds of candidate graphs, like query graph and its extension[4, 5].
The center node q in a semantic graph is an answer candidate, while others correspond to the entities appearing in
the question (sometimes entity linking technique is applied to help construct semantic graph) and some constraint to
the answer (like for ’first’ or ’firstly’, the related time or date must be minimized). Each edge correspond the relation
between the two nodes and its label indicates the relation type. Such semantic graphs store the relation between known
entity and a candidate answer. By generating a representation of the semantic graph, model can calculate the ranking
score for different candidate answers and select the best one. As some models consider two-hop relations, nodes that
do not appears in the question but are related with both candidate answer and appearing nodes are also added into the
graph.

3.2 Candidate Graph Representation

Recent works usually learn representation for candidate graphs via graph neural network (GNN). In [3], the authors
propose to encode the question via a CNN and apply Gated Graph Neural Network (GGNN) to learn representation for
semantic graphs. GGNN is a kind of graph neural network with recurrent architecture, which updates the representation
of nodes based on information aggregated from their neighbors in each iteration. Original GGNN takes the graph
structure of the candidate graph and the feature vector of nodes as input. However, as the semantic graphs contain
different relations, the authors also assign each relation an embedding vector as input feature. Both of the node feature
and relation feature are calculated based on their labels in Wikidata, denoted as l. For an entity or a relation, the authors
tokenize its label as a set of word and calculate the sum of the word embedding vectors (in this paper, they use GloVe),
denoted as wsum. Then, a fully connected layer transform the word embedding to a single feature vector:

hl = tanh(Wlwsum + bl) (1)

Then, the hidden states of nodes are initialized with their feature vectors h0v = hlv . And relation features are further
transformed to two vectors representing incoming edges and outgoing edges respectively:hinr = Winhlr ,houtr =
Wouthlr .

In an iteration t, the information from neighbor nodes and incoming and outgoing edges are first aggregated as a vector
atv:

atv =
∑

j∈N (v)

ht−1j +
∑

e∈Ein(v)

hinre +
∑

e∈Eout(v)

houtre (2)

where Ein(v) and Eout(v) are the sets of incoming and outgoing edges of node v respectively and re is the relation type
of e. Then the hidden states of node v is updated based on following equations with similar form as Gated Recurrent
Unit (GRU):

ztv = σ(W zatv + Uzht−1v + bz) (3)

rtv = σ(W ratv + Urht−1v + br) (4)

3

November 12, 2019

Figure 4: The process of encoding question sentence.

ĥtv = σ(Watv + U(rtv � ht−1v) + b) (5)

htv = (1− ztv)� ht−1v + ztv � htv (6)
where σ is a sigmoid function. After T iterations, the final hidden vector of center node is transformed through a fully
connected layer with relu activation: vg = ReLU(Wgh

T
q + bg). Then the question sentence is encoded to a vector vq

via a CNN as shown in Figure 4. The cosine similarity of two vectors γ(vq, vg) is calculated as the ranking score. The
whole model is optimized via a marginal loss function:

L =
∑
g∈C

max(0,m− γ(vq, v+g) + γ(vq, v
−
g)) (7)

where C is the set of all candidate semantic graphs of a question, γ(vq, v+g) is the ranking score of golden truth and
γ(vq, v

−
g) is the ranking score of a negative sample.

4 Reasoning on Knowledge Base

In this section, we will illustrate two advanced research of Knowledge Base (Graph) reasoning for Query Answering
and Question Answering respectively.

4.1 Reasoning for Query Answering

Given a query (e1, r, ?), the Knowledge Base reasoning for query answering can be formulated as searching a path P
from e2 to another node on the corresponding Knowledge Graph and guarantee that P is equivalent to relation r. This
formulation is equivalent to a sequential decision process. Consequently, reinforcement learning can be applied to train
a model that can search the neighborhood of the head node via random walk efficiently and stop at the answer node[6].

4.1.1 Reinforcement Learning Environment

In the authors’ design, the model will stop searching after T steps. So the environment of answer searching is a "finite
horizon" (which mean the process has a terminal state), "deterministic partially observed Markov decision process that
lies on the Knowledge Graph G". Therefore, this process can be formulated as a 5-tuple (S,O,A, σ,R):

4

November 12, 2019

• States: The state space S consists of all valid combination (et, e1, rq, e2), where et is the current entity node,
e1 is the head node, r is the query relation and e2 is the node the model is searching for.

• Observations: As the answer node can not be observed by the model, the observation set O only consist of all
valid (et, e1, r), which the model make decisions based on.

• Actions: The set of possible actions A in a State S = (et, e1, rq, e2) consist of all outgoing edges from et and
staying on the current node et. Formally AS = {(et, r, v) ∈ E : S = (et, e1, rq, e2)} ∪ {(et, φ, et)}, where
E is the set of outgoing edges on et and v is a neighbor of et.

• Transition: The environment transits deterministically immediately after the action of the model. As the
action answer and query are both deterministic, the environment evolves as σ(S,A) = (v, e1, rq, e2), where
A = (et, r, v) and S = (et, e1, rq, e2).

• Rewards: The model only acquire reward of +1 when it is on the right answer after T steps.

4.1.2 Policy Network

The policy network of the model encode the history information (decisions and observations) at step t as a continuous
hidden state ht via LSTM:

ht = LSTM(ht−1, [at−1; ot]) (8)

where at−1 is the embedding of the outgoing relation selected by the model in step t− 1 and ot is the embedding of the
observed et at step t. Then a 2-layer MLP calculate the distribution from which a discrete action is sampled:

dt = softmax(At(W2ReLU(W1[ht : ot; rq]))) (9)

At ∼ Categorical(dt) (10)

where At is the embedding matrix of all possible actions. The i-th raw of At is the concatenation of the embedding of
ri and v (the relation and tail node of the i-th action in ASt

)

Then, the authors use policy descent algorithm train the model to find correct answers

4.2 Reasoning for Question Answering

Unlike the Query Answering with structural query, Question Answering requires the reasoning model to calculate the
representation of information from Knowledge base while understanding the natural language question. Therefore, the
model with good reasoning ability need interaction between knowledge representation and question encoding. In a
recent paper[7], the authors propose a reasoning model with bidirectional attention module and enhancing module. The
overview of the model is shown in Figure 5. The input module transform the question to a sequence of hidden states
HQ. At the same time, the memory module encode three types of information (the type of candidate, the path from
candidate answer to topical entity in the question, the neighbor entity of candidate answer in KB) from a candidate
answer as three key-value vector pairs (Mk

i t,M
v
i t),(M

k
i p,M

v
i p),(M

k
i e,M

v
i e) respectively.

Then the bidirectional attention module helps calculate the importance of candidate answer for the summary of KB
in light of question and the importance of each token in the question in light of the KB. And the enhancing module
updates the representation of candidate answers based on question representation while improving the encoding of
question based on KB summary.

4.3 Bidirectional Attention

4.3.1 KB-aware Attention Module

The overview of the KB-aware attention module is shown in 6. A BiLSTM with self-attention operation is applied on
the hidden state sequence to encode the whole sequence as a single vector q:

q = BiLSTM([HQAQQT
, HQ])

AQQ = softmax((HQ)THQ)
(11)

where AQQ is the self-attention matrix. Then another attention module calculates the importance of each candidate
answer to the question based on q and use the importance score to calculate the summary of the answer type mt, answer

5

November 12, 2019

Figure 5: The overview of reasoning module for question answering.

Figure 6: The overview of KB-aware Attention Module.

path mp, answer neighbor me from the KB:

mx =
∑
i∈A

axi Ṁ
vx
i

ax = Attadd(q,M
kx) = softmax(tanh([qT ,Mkx]W1)W2)

(12)

whereA is the candidate answer set and x ∈ {t, p, e}. So far we have obtained a summary of the KBm = [mt;mp,me].
Then we can compute the attention from each word i in question to different KB aspects, formulated as AQm = HQT

m.
Then the model applies max-pooling over the last dimension (the dimension of KB aspects, whose number is 3) and get
a vector aQ which is as long as the question sequence. The intuition of max-pooling is that each word in the question
contribute to a specific purpose (like decide the type of answer, relation between answer and topical entities and so on).
So, the max-pooling over the last dimension helps find the purpose of each word. Then a softmax function normalizes
aQ to âQ and get the importance of each word to the question encoding in light of KB summary.

6

November 12, 2019

4.3.2 Importance Module

The importance module calculate the importance of different KB aspects by measuring their relevance to the questions.
The model start by computing a |Q|× |A|×3 attention tensorAQM , which indicates the strength of connection between
each word-answer pair in each aspect (t,p,e):

AQM
ijx = HQ

i Ṁ
kx
j (13)

Then, for each answer-aspect pair, we select the word that maximize its strength. Then use softmax to normalize it. In
this way, we can calculate the normalized importance of each aspect to an answer. Then, by applying this importance to
update the representation of the answer, we acquire the answer representation in light of question

Ajx =AQM
ijx , i = argmax

i
AQM

ijx

Âjx =softmax([Ajt;Ajp;Aje])

M̂k
i =

∑
x∈{t,p,e}

ÂjxM
k
i

M̂v
i =

∑
x∈{t,p,e}

Mv
i

(14)

4.4 Enhancing Module

To enhance the interaction between answer representation and question representation, the authors add another two-way
attention. First, by applying max-pooling on the last dimension of AQM (the dimension of KB aspects, whose number is
3), we preserve the aspect in which the connection of each word-answer pair is maximized and get AQ

M . We normalize
each row of AQ

M to get the attention of each word to each answer ÂQ
M . Then, we update question representation

sequence ĤQ = HQ + âQ � ÂQ
MM̂

v . The final representation of question is calculated as q̂ = HQâQ

Similarly, we can also update the question-enhanced answer representation M
k
. First, we transpose use softmax to

normalize each row of the transposed matrix of AQM and acquire AM
Q , indicating the importance of each word to each

answer. Then we calculate the answer representation M
k

via

âM =(ÂQ
M)T âQ

M
k
= M̂k+âM � (AM

Q (ĤQ)T)
(15)

With above two representations, the generalization module and answer module apply some tricks like batch normalization
on representation to get final result.

References

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A collaboratively created
graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA, 2008. ACM.

[2] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from question-answer
pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
1533–1544, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

[3] Daniil Sorokin and Iryna Gurevych. Modeling semantics with gated graph neural networks for knowledge base
question answering. In COLING, 2018.

[4] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged query graph
generation: Question answering with knowledge base. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1321–1331, Beijing, China, July 2015. Association for Computational Linguistics.

[5] Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-based question answering with knowl-
edge graph. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pages 2503–2514, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee.

7

November 12, 2019

[6] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex
Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases
using reinforcement learning. In ICLR, 2018.

[7] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Bidirectional attentive memory networks for question answering
over knowledge bases. In NAACL-HLT, 2019.

8

	Introduction
	Task Formulation and Datasets
	Knowledge Base
	Question Answering on Knowledge Base

	Knowledge Representation
	Candidate Graph
	Candidate Graph Representation

	Reasoning on Knowledge Base
	Reasoning for Query Answering
	Reinforcement Learning Environment
	Policy Network

	Reasoning for Question Answering
	Bidirectional Attention
	KB-aware Attention Module
	Importance Module

	Enhancing Module

