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Abstract

Knowledge graphs, especially commonsense knowledge graphs, often face the
issue of sparsity, which prevents them from serving well the downstream tasks.
Knowledge completion aims to address this issue by populating the knowledge
graphs with newly predicted facts. Most of the works focus on encyclopedic
knowledge graphs, in which the entities and relations space are well defined. Only
a few attention has been drawn to commonsense knowledge completion previously.
The recent progress in language models again raises a surge interest in mining
commonsense knowledge from these large-capacity models. In this note, we
introduce several challenges in commonsense knowledge completion and how the
traditional and recent methods (with language models) tackle these challenges.

1 Background

One particular type of knowledge which help machine better understand natural language is referred
to as commonsense knowledge or background knowledge. This kind of knowledge is rarely stated
explicitly in textual corpora and people try to infer this knowledge from raw text by patterns or
manual annotation. Although with high precision, these methods suffer from low coverage. Therefore,
researchers have been developing techniques to automatically increase the coverage by inferring miss-
ing facts. These techniques are categorized as (commonsense) knowledge completion or generation.
In particular, there are two kinds of knowledge completion tasks.

1. Triplet Classification. Given a triplet fact (s,r,0), the goal is to develop a parametric
model which provides a confidence score for evaluating the fact.

2. Link Prediciton. Given a incomplete triplet fact (s, r,?) or (7,7, 0), the goal is to predict
the missing entity.

A lot of efforts have been put into encyclopedic knowledge graphs like Freebase and Wordnet. These
knowledge bases have a well-defined space for entities, meaning that their entities constitute a fix
set. This closed set greatly facilitate the knowledge completion since we could leverage the graph
structure for better knowledge representation. However, the entities from commonsense knowledge
like ConceptNet are usually arbitrary phrases. The non-canonicalized, free-form text of the entities
leads to a discrepancy that we might query information about an specific entity using different
words from those contained in the knowledge graphs. So it poses a requirement for the knowledge
completion models for commonsense knowledge to be able to handle queries without the precise
linguist form as in the original knowledge graphs.

2 Previous Method

Li et al.[[2016] is one of the earliest works which propose models for defining a score function. The
score function could provide a confidence score for a triplet with arbitrary entities. Two types of
score function are considered as follows.



2.1 Score Functions

The first score function is based on the Bilinear Model [Yang et al., |2015]] which proves to work well
on traditional knowledge completion:
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where s, 0 € R* are the representations of subject and object, M, € R¥** is the parameter matrix
for relation 7.

Another score function is based on neural networks:
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where vy, is the representation of the whole triplet. The model is then trained to give high scores for
positive triplets and low scores for negative triplets with closed world assumption.

2.2 Entity Representation

To encode the free textual entities into embedding space, the paper considers two approaches. One is
averaging the word embeddings of the entity mention. Another is taking the pooling of the output
from a bidirectional LSTM. For Eq.[T} the LSTM is seperately used for the subject and object. In Eq.[2}
the LSTM is fed with the concatenation of subject and object and then the output is concatenated
with a relation embedding v, to create the NN input vector vij.

3 Language Model Methods

Although we have been arguing that commonsense knowledge is seldom expressed explicitly in
natural language, the recent success of large language models on several NLP tasks has raised
researchers’ interest in investigating whether these large-capacity models encode some commonsense
knowledge from huge corpora. One feasibility is that after pre-training on corpora, the language
models manage to extract some implicitly stated knowledge. Here, we introduce two main categories
of related works, the generative models and the discriminative ones.

3.1 Generative Models
3.1.1 COMET

Instead of representing knowledge via symbolic facts or continuous embeddings, COMmonsEnse
Transformer (COMET) [Bosselut et al., |2019] proposes to model the commonsense knowledge
neurally. COMET uses existing triplet facts as seed to adapt the representation of a language model
(GPT) to knowledge generation. The benefits come with two folds. One is that both structured
and unstructured knowledge are greatly leveraged and fused. Another is that language models are
particularly suitable for generating commonsense knowledge facts in the sense that they are often
loosely structured open-text descriptions.

Method. COMET uses GPT as the backbone, which is a pre-trained multi-layer transformer decoder.
It recursively generate a output distribution of the target tokens based on the left context. In order to
adapt GPT to triplets, COMET firstly converts each fact (s, r, 0) to its natural language form:

X = {X*, X", X°}, 3)

where X ? is the token sequence that makes up the subject mention and similarly for X" and X°.
Then COMET is trained o maximize the conditional log-likelihood of predicting the phrase object
tokens, X°:
s[+Irl+lol
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Experimental Results. COMET leverages ATOMIC and ConceptNet as the two knowledge seed sets.
The promising results demonstrate COMET’s ability to generate novel knowledge of high quality.



Model PPL Score N/Tsro N/To Human

LSTM - s - 60.83 8625 7.83 63.86
CKBG (Saito et al., 2018) - 5717 86.25  8.67 53.95
COMET (- pretrain) 8.05 89.25 36.17  6.00 83.49
COMET - RELTOK 439 95.17 5642  2.62 92.11
COMET 432 9525 59.25 375 91.69

Table 1: COMET’s generation on ConceptNet.
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Figure 1: Prediction from COMET trained on ATOMIC. More results could be found at paper’s demo
https://mosaickg.apps.allenai.org/.

From Table[T] the paper shows the following two observations. (1) COMET with a pre-trained GPT
had a clear improvement over the randomly initialized model COMET (-pretrain). (2) Converting
symbolic relations to natural language is also helpful in better adapting GPT to generate knowledge
compared with COMET-RELTOK baseline. Some impressive results on ATOMIC dataset are also
illustrated in Figure[T]

3.1.2 Language Models as Knowledge Bases?

Rather than adapting language models with knowledge seeds, researchers are also investigating
whether commonsense knowledge could be extracted from language models for free.

The paper [Petroni et al.| [2019] proposes to use language models as the interface for querying
knowledge. The motivation is as follows. Extracting relational data from text or other modalities to
populate the knowledge bases requires complex NLP pipelines involving entity extraction, coreference
resolution, entity linking and relation extraction components that often need supervised data and fixed
schemas. Errors can easily propagate and accumulate throughout the pipeline. So their proposed
solution is to query neural language models for relational data by asking them to fill in masked tokens
in sequences like "You are likely to find a overflow in a [Mask]". Some of the results on ConceptNet
queries could be found in Figure 2}

Several resulting benefits include (1) requiring no schema engineering, (2) no need for human
annotations, and (3) supporting an open set of queries.

One major limit of this method is that they only consider single token entities generation, since the
mask token could exist in any position in the query and they want to save the trouble of multi-token


https://mosaickg.apps.allenai.org/

AtLocation You are likely to find a overflow in a . drain sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]

CapableOf Ravenscan . fly fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
CausesDesire Joke would make you wantto . laugh cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]

8 Causes Sometimes virus causes . infection disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]

%_ HasA Birds have . feathers wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]

§ HasPrerequisite Typing requires . speed patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]

8 HasProperty Timeis . finite short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
MotivatedByGoal ~ You would celebrate because you are . alive happy [-2.4], human [-33], alive [-3.3], young [-3.6], free [-3.9]
ReceivesAction Skills canbe . taught acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
UsedFor Apondisfor . fish swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

Figure 2: Examples of generation from BERT-large.

decoding. Another is that for constructing queries for ConceptNet, they have to find sentences that
contain both the subject and the object from the Open Mind Common Sense (OMCS) corpus. How
to create natural language query for commonsense knowledge automatically for probing language
models is not investigated.

3.2 Discriminative Models

It is also feasible to apply language models to conduct the triplet classification task. Afterall, language
models could provide a probability in some way for a given input. Thus, these discriminative models
usually fall into the following paradigm. Firstly, they simply convert the triplet facts into natural
language with minor adaption with regard to some specific language model being used. Then feed
the converted facts to the language models to get a plausibility on whether they hold.

3.2.1 Commonsense Knowledge Mining from Pretrained Models

Another work trying to extract commonsense knowledge from fixed language models is |Davison
et al.|[2019] except that they aim at solving triplet classification. The motivation of this paper is also
different in that they claim those methods trained on ConceptNet generalize poorly to novel data.
Much of the data in the ConceptNet test set were simply rephrased relations from the training set,
and that this train-test set leakage led to articially inflated test performance metrics.

To determine a function f(x) that maps a triplet fact x to its confidence score, the paper proposes
to decompose f(x) = o(7(z)) into two sub-components: a sentence generation function 7 maps a
triplet to a natural language sentence and a score function o provides a confidence score.

The sentence generation function 7 is based on the combination of rules and language model. The
paper handcrafts a set of sentence templates S for each relation . Then they select the one with
highest log-likelihood when applied on a specific triplet according to a unidirectional language model
Prae
T(x) = ar%msax[log Pra(9)) (5)
€

As for the score function o, the paper proposes to use the estimated point-wise mutual information
(PMI) of the subject and object conditioned on the relation:

PMI(o, s|rr) = logp(ol|s, r) — log p(o|r), (6)

where each of the probability is estimated by a masked bidirectional language model. For p(o|s, r),
they mask out all the object tokens and then greedily approximate substitute back the token with
highest probability. Likewise, for p(o|r), they mask out the subject and object tokens and sequentially
unmask the object tokens only.

The experimental results in Table 2] show that although inferior to previous supervised methods, this
unsupervised method generalize better to new source of knowledge where there is no corresponding
training data. It validates that without fine-tuning the language model, the proposed method is not
biased towards any commonsense knowledge base.

3.2.2 Exploiting Structural and Semantic Context for Commonsense Knowledge Base
Completion

The last work Malaviya et al.| [2020] on discriminative model provides a unique insight on why
free form text for representing entities poses a challenge for commonsense knowledge completion.



Model Task 1 Task 2

Unsupervised
CONCATENATION 68.8 2.95+0.11
TEMPLATE 722 2.98+0.11

TEMPL.+GRAMMAR 74.4 2.56 +£0.13
COHERENCY RANK 78.8 3.00 £ 0.12

Supervised

DNN 89.2 2.50
FACTORIZED 89.0 2.61
PROTOTYPICAL 79.4 2.55

Table 2: F1 scores on triplet classification for ConceptNet and Wikipedia knowledge.
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Consider the nodes "prevent tooth decay" and "tooth decay" which are conceptually related, but not
equivalent. The conceptual diversity and expressiveness of the graph lead to the number of nodes with
orders of magnitude larger, and thus the sparsity issue is substantially severer (as shown in Figure 3]

As a result, most of the existing knowledge completion methods which implicitly assume densely
connected graphs would suffer greatly from the sparsity. The claim is validated by the results in
Figure ] which shows that a high performing model degrades quickly as the the graph density is
reduced.

To represent a entity, the paper proposes to infuse information from both language models and local
graph structure. As shown in the encoder part of Figure [5] the representation of an entity is the
combination of the outputs from the BERT and RGCN. The BERT is applied on the entity tokens and
learns to transfer knowledge from language to the knowledge graph. The RGCN is applied on the
neighborhood of the entity which encodes the local graph structure.

As argued by the paper, the sparsity of commonsense knowledge graph makes it challenging to
perform information propagation across an entity’s neighborhood. The paper addresses this issue by
adding a new synthetic sim relation to each pair of similar entities. The similarity is defined as the
cosine similarity between the entities’ embeddings given by the fine-tuned BERT. Then all pairs of
entities with similarity above a preset threshold are connected by the sim relation. The results from
Table 3| show that the graph densification help improve the knowledge completion.

4 Conclusion and Discussion

The methods discussed above try to leverage information from either existing structured knowledge
or unstructured text encoded in language models. They tackle the sparsity issuse brought by the free
text entities with several strategies. Still, it’s not clear whether and how language models capture the
commonsense knowledge. Another question is that whether encoding commonsense knowledge in a
triplet form is the best choice.
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Figure 5: Model Architecture

CN-100K ATOMIC

MRR HiTs@1l @3 @10 | MRR HiTs@l @3 @10
DISTMULT 897 451 976 1744 | 1239 924 15.18 18.30
COMPLEX 1140 742 1245 19.01 | 1424 1327 14.13 1596
CONVE 20.88 13.97 2291 34.02 | 10.07 824 1029 1337
CONVTRANSE 18.68 7.87 23.87 38.95 | 1294 1292 1295 1298
COMET-NORMALIZED 6.07 0.08 292 21.17 | 3.36* 0.00* 2.15*% 15.75*
COMET-TOTAL 6.21 0.00 0.00 24.00 | 4.91* 0.00* 2.40* 21.60*
BERT + CONVTRANSE 49.56 38.12 55.5 71.54 | 1233 1021 12.78 16.20
GCN + CONVTRANSE 29.80 21.25 33.04 47.50 | 13.12 1070 13.74 17.68
SIM + GCN + CONVTRANSE 30.03 21.33 3346 46.75 | 13.88 11.50 14.44 18.38
GCN + BERT + CONVTRANSE 50.38 38.79 5646 7296 | 108 9.04 11.21 14.10
SIM + GCN + BERT + CONVTRANSE | 51.11 3942 59.58 73.59 | 10.33 841 10.79 13.86

Table 3: Knowledge Completion Results on ConceptNet and ATOMIC.
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