
CSCI699 - USC, Fa2019

Lecture 4: Confronting the Partition Function
September 10, 2019

Lecturer: Prof. Xiang Ren Scribe: Nathan Bartley

1 Review
Recall: In many cases it’s difficult to directly sample from p(x). We can get around this in a

couple of different ways:

1. Importance Sampling, where you transform the problem such that you sample directly from
a surrogate distribution q(x).

2. Rejection Sampling, where you also use a surrogate distribution q(x) but accept each sam-
pled point with a probability in proportion to the two densities.

3. Markov Chain Monte Carlo methods, where we define a random process (the Markov
Chain) that converges to p(x) after some time steps. After convergence, we sample from
this approximate distribution.

In order to construct such a Markov chain, we have to find a transition distribution A.
Gibbs sampling is a useful method for defining such a transition distribution, and hence
a Markov chain. For more information regarding Gibbs sampling, see the previous lecture
notes and [3].

2 Partition Functions
Many undirected graphical models are defined by an unnormalized probability distribution p̃(x; Θ),
i.e., p̃ is non-negative and has nonzero finite integral (not necessarily equal to one).

We normalize p̃ by dividing by the partition function Z(Θ)

p(x; Θ) =
1

Z(Θ)
p̃(x; Θ)

We know that by construction, the partition function Z(Θ) =
∫
p̃(x)dx or when using discrete

variables,
∑

x p̃(x). Z(Θ) depends on the parameters of the model, making it complicated when
taking the gradient of the log-likelihood function.

∇Θ log p(x; Θ) = ∇Θ log p̃(x; Θ)−∇Θ logZ(Θ)

"Positive Phase"− "Negative Phase"

1

Like with many complicated densities, computing Z(Θ) can become intractable. This means
that, in many cases, the positive phase of the gradient might be straightforward to compute, but not
the negative phase.

There are three different approaches that arise to address this:

1. Design a model with a tractable Z(Θ) (e.g., softmax function)

2. Do not compute p(x) at all

3. Take MCMC approaches to estimate Z(Θ)

To further describe the behavior of the gradient, we explore the following

∇Θ logZ =
∇ΘZ

Z
=

∑
x∇Θp̃(x)

Z

when p(x) < 0 ∀x

⇒ p̃(x) = exp(log(p̃(x))

⇒
∑

x∇Θp̃(x)

Z

=

∑
x∇Θ exp(log(p̃(x)))

Z

=

∑
x exp(log(p̃(x))∇Θ log(p̃(x))

Z

=
∑
x

p(x)∇Θ log(p̃(x))

= E
x∼p(x)

[∇Θ log(p̃(x))]

= ∇Θ log(Z)

This equivalence to the expected value of the gradient of the model allows us to use Monte
Carlo methods to compute the gradient. The gradient requires the following conditions:

1. p̃ must be integrable for every Θ

2. ∇Θp̃(x) must exist for all Θ and almost all x

3. There must exist some R(x) that bounds∇Θp̃(x), i.e. maxi

∣∣∣ d
dΘi

p̃(x)
∣∣∣ ≤ R(x)∀Θ and almost

all x

Most ML models meet these conditions.

2

Intuition. One way to think about how we split the log-likelihood gradient across a "positive"
and "negative" phase is that we are trying to increase the log p̃(x) for x drawn from the data, and
decrease the log p̃(x) drawn from the model distribution.

3 Stochastic Maximum Likelihood and Contrastive Divergence
Now that we have a set of approaches for addressing an intractable partition function. Because

we can directly estimate ∇Θ logZ, we can imagine readily using MCMC methods every time we
need to compute the gradient.

• It is infeasible to burn in a set of Markov chains every time!

Algorithm 1: Gibbs Update

Data: x(i)

Result: updated x(i)

1 Draw a sample a ∼ p(xi|x(t)
−i) where x

(t)
−i is the set of all variables in x(t) except for the ith

variable.
2 x(i)← a;
3 return a

Algorithm 2: Naive MCMC algorithm
Data: ϵ : Step size for updating Θ
K : No. Gibbs steps for burn-in
Result: Θ : learned model parameters

1 while not converged do
2 Sample minibatch {x(1), ..., x(m)};
3 g ← 1

m

∑m
i=1∇Θ log p̃(x(i); Θ);

4 Initialize x̃(1), ..., x̃(m) to a set of random values;
5 for i = 1 : K do
6 for j = 1 : m do
7 x̃(j) ← GibbsUpdate(x̃(j));
8 end
9 end

10 g ← g − 1
m

∑m
i=1∇Θ log p̃(x̃(i); Θ);

11 Θ← Θ+ ϵg;
12 end
13 return Θ;

Intuition. Because the negative phase involves drawing samples from the model’s distribution,
it tries to find points it believes in strongly. A useful analogy is to think about it like the human
brain during sleep: it has been proposed that the brain maintains a probabilistic model of its world

3

and follows ∇Θ log p̃ during the day, as it experiences events, and follows the negative gradient
to minimize log Z while dreaming (i.e., while sleeping and experiencing events sampled from the
current iteration of the model).

Limitations. Because the naive MCMC algorithm intializes the chains randomly, a better ap-
proach would be to initialize the chains closer to the input distribution. This will reduce the total
number of burn-in steps necessary for every gradient step. This change yields the Contrastive
Divergence algorithm.

Algorithm 3: Contrastive Divergence algorithm
Data: ϵ : Step size for updating Θ
K : No. Gibbs steps to mix when initialized from pdata
Result: Θ : learned model parameters

1 while not converged do
2 Sample minibatch {x(1), ..., x(m)};
3 g ← 1

m

∑
i=1m∇Θ log p̃(x(i); Θ);

4 for i = 1 : m do
5 x̃(i) ← x(i);
6 end
7 for i = 1 : K do
8 for j = 1 : m do
9 x̃(j) ←GibbsUpdate(x̃(j));

10 end
11 end
12 g ← g − 1

m

∑m
i=1∇Θlogp̃(x̃

(i); Θ);
13 Θ← Θ+ ϵg;
14 end
15 return Θ;

Intuition. The algorithm can be thought of as penalizing the model for having a Markov chain
that changes the input rapidly when input comes from the data. This is reminiscient of autoen-
coder training. Additionally, the Contrastive divergence update direction is not the gradient of any
function (cycles could happen).

Limitations. Contrastive divergence is good for shallow models like RBMs, but they fail to sup-
press regions of high probability that are far from actual training examples, i.e., spurious modes
where there is high pmodel by low pdata. Contrastive divergence is not good for training deeper
models directly. Training shallow models and stacking them is possible. A way to resolve some
of these problems is to initialize the Markov chains at each step with the states of the previous
gradient step. This yields stochastic maximum likelihood or Persistent contrastive divergence.

4

Algorithm 4: Stochastic Maximum Likelihood / Persistent Contrastive Divergence algorithm
Data: ϵ : Step size for updating Θ
K : No. Gibbs steps to mix when sampling from p(x; Θ + ϵg), initialized from p(x; Θ)
Result: Θ : learned model parameters

1 Initialize x̃(i), ..., x̃(m) to random values;
2 while not converged do
3 Sample minibatch x(1), ..., x(m);
4 g ← 1

m

∑m
i=1∇Θlogp̃(x

(i); Θ);
5 for i = 1 : K do
6 for j = 1 : m do
7 x̃(j) ←GibbsUpdate(x̃(j));
8 end
9 end

10 g ← g − 1
m

∑m
i=1∇Θ log p̃(x̃(i); Θ);

11 Θ← Θ+ ϵg;
12 end
13 return Θ;

Practical considerations. PCD has the following considerations:

• It is able to train deep models efficiently

• It is vulnerable if K is too small or ϵ is too large

• After training the model, draw samples from a fresh Markov chain initialized from a random
starting point. Since it’s a persistent model, the negative chains may have already "seen" all
the points

• Contrastive Divergence has lower variance, but Persistent Contrastive Divergence has higher
variance.

NB: We can accelerate mixing during learning by Fast PCD, setting Θ = Θ(slow) + Θ(fast), two
copies of the same parameters, but with different learning rates.

3.1 Summary
Now we have methods that can estimate∇Θ logZ. We can use some method to tackle logp̃(x) and
then some MCMC method on the partition function gradient.

We can also use a method that gives us a lower-bound on p̃ for the positive phase (like vari-
ational inference). Other methods in this chapter will not be able to use bounds, as they require
more information about the distribution.

5

4 Pseudolikelihood
We can bypass Z(Θ) entirely by computing ratios of probability:

p(x)

p(y)
=

1
Z
p̃(x)

1
Z
p̃(y)

=
p̃(x)

p̃(y)

To describe further, suppose we partition x into a, b, and c.

p(a|b) = p(a, b)

p(b)
=

p(a, b)∑
a,c p(a, b, c)

=
p̃(a, b)∑

a,c p̃(a, b, c)

if |a| or |c| large, we would need to marginalize lots of variables. We can move c into b to reduce
the number of evaluations. Via the chain rule of probability we know that:

log p(x) = log p(x1) + log p(x2|x1) + ...+ log p(xn|x1:n−1)

This then yields the pseudo-likelihood:

n∑
i=1

log p(xi|x−i)

Intuition. If each random variable has k different variables, then this only requires kn evaluations
rather than kn necessary to compute the partition function.

Estimation by maximizing pseudolikelihood is asymptotically consistent, meaning that:

lim
n→∞

argmax
Θ

n∑
i=1

log p(xi|x−i) = Θ∗
MLE (1)

4.1 Generalized Pseudolikelihood Estimator
We can generalize Pseudolikelihood by considering m different sets: S(i), i = (1,...,m). When
m = 1 we recover log-likelihood, and when m = n, we recover regular pseudolikelihood

m∑
i=1

log p(xS(i) |x−S(i)) (2)

Practical Considerations. Pseudolikelihood tends to perform poorly on tasks that require a good
model of the full joint p(x), like density estimation and sampling. Pseudolikelihood tends to per-
form better than Maximum Likelihood Estimation on imputation and tasks requiring only condi-
tional distributions. It is also good for data with structure, like images, and for training single-layer
models (or deeper models with approximation inference methods).

6

Limitations. Pseudolikelihood is one of the methods that cannot be used in variational infer-
ence, or other methods that only give bounds on p̃(x). It also has much greater complexity than
Stochastic Maximium Likelihood due to computing all of the conditional distributions. General-
ized Pseudolikelihood can perform decently when only one conditional is computed per example.

5 Score Matching and Ratio Matching
Another way of training a model without estimating Z nor ∇ΘZ is by minimizing the expected
square difference in ∇x log pmodel(x; Θ) and ∇x log pdata(x; Θ), where the score is ∇x log p(x).
We can define our task as:

L(x; Θ) =
1

2
∥∇x log pmodel(x; Θ)−∇x log pdata(x; Θ)∥22

=
n∑

j=1

(
d2

d2xj

log pmodel(x; Θ) +
1

2
(
d

dxj

log pmodel(x; Θ))2)

J(Θ) =
1

2
E

pdata(x)
L(x; Θ)

Θ∗ = min
Θ

J(Θ)

Practical considerations. A benefit of using score matching is that we do not need to know the
true data generating process. However, the structure of the likelihood function makes it inappli-
cable to discrete data (since the gradients are with respect to x). Addtionally, score-matching can
help pretrain the first hidden layer of a deeper model, but since deeper hidden layers tend to contain
discrete variables, it is not helpful for deeper layers.

Like with pseudolikelihood, score matching needs to evaluate logp̃(x) and the respective gra-
dients, meaning that approximations that only give bounds are not applicable. Generalized score
matching does not work in high-dimensional discrete spaces where the observed probability of
many events is zero. This is where we can apply ratio matching.

Ratio matching applies specifically to binary data, and is defined as:

L(RM)(x; Θ) =
n∑

j=1

(
1

1 + pmodel(x;Θ)
pmodel(f(x,j;Θ))

) (3)

Where f(x, j) returns x where the bit at position j is flipped. It has been found that ratio matching
outperforms Stochastic Maximum Likelihood, Pseudolikelihood, and Generalized Score Matching
in terms of the ability of models trained with ratio matching to denoise test set images.

Intuition. Ratio matching, like pseudolikelihood, can be thought of as pushing down on all fan-
tasy states that have only one variable different from training data.

7

Practical Consideration. Ratio matching can be useful as a basis for dealing with high-dimensional
sparse data, e.g., word count vectors. This kind of data is hard for MCMC-based methods because
it will keep yielding dense values until it has learned to represent the sparsity in the data distribu-
tion. This is explored more in [1].

5.1 Denoising Score Matching
We can regularize score matching by introducing a corrpution process q(x|y):

psmoothed(x) =

∫
pdata(y)q(x|y)dy (4)

Practical Consideration. Since we do not usually have access to the true pdata, any consistent
estimator will eventually turn pmodel into a set of Dirac distributions centered on the training data.
This is where the regularization by q can help.

NB: Several autoencoder training algorithms are equivalent to Score Matching or Denoising
Score Matching, which help overcome the same Z problem.

6 Noise-Contrastive Estimation
Up until now we have seen

• Stochastic Maximum Likelihood and Contrastive Divergence estimate the gradient of logZ.

• Score Matching and Pseudolikelihood avoid Z altogether.

Noise-Contrastive Estimation (NCE) represents pmodel as:

log pmodel(x) = log p̃model(x; Θ) + c (5)

where c is an approximation of − logZ(Θ). NCE works by estimating Θ and c simultaneously.
log pmodel(x) may not correspond exactly to a valid probability distribution, but it will be more and
more valid as the estimate of c improves.

NB: NCE can be good for tractable partition functions too.

Intuition. NCE works by removing the unsupervised learning problem of estimating p(x) to
a supervised binary classification problem where one of the categories corresponds to the data
generated by the model.

It works via the following:

1. Introduce a (tractable) noise distribution pnoise(x)

8

2. Construct a new model over x and a binary "switch" variable y s.t.

pjoint(y = 1) = 0.5

pjoint(x|y = 1) = pmodel(x)

pjoint(x|y = 0) = pnoise(x)

3. Similarly we construct a switch variable for ptrain and pnoise

We can now find MLE of this supervised learning problem via:

Θ, c = argmax
Θ,c

E
x,y∼ptrain

log pjoint(y|x)

The pjoint is now essentially a logistic model:

pjoint(y = 1|x) = pmodel(x)

pmodel(x) + pnoise

=
1

1 + pnoise(x)
pmodel(x)

=
1

1 + exp(log(pnoise(x)
pmodel(x)

))

= σ(− log
pnoise(x)

pmodel(x)
)

= σ(log pmodel(x)− log pdata(x))

Practical Considerations. NCE is simple to apply as long as log p̃model is easy to compute (pnoise
is easy by construction). NCE works best when there are few random variables, but does work well
on random variables that take on a lot of values (e.g., conditional distribution of a word conditioned
on its context). Like Score Matching and Pseudolikelihood, NCE does not work if there is only a
lower bound on p̃.

Example. A simplified version of NCE was also presented in [4] as the Negative Sampling ob-
jective function. The Skipgram model’s original objective function as defined by the authors is to
maximize:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j|wt)

where

p(wt+j|wt) = p(wO|wI) =
exp(v

′T
wO

vwI
)∑W

w=1 exp(v
′T
w vwI

9

As we know, it can be complicated to compute this gradient, as it is proportional to the size of the
data. The authors use the following objective instead of a usual NCE approach:

log σ(v
′T
wO

vwI
) +

K∑
i=1

E
wi∼pn(w)

[log σ(−v′T
wi
vwI

]

This replaces every log p(wO|wI) in the Skipgram model. This allows us to use samples from the
noise distribution without having to use any of the associated probability values (as in NCE).

Extensions. Self-contrastive estimation is NCE where the model distribution is copied to define
the new noise distribution before each step. Intuitively, it is distinguishing reality from its own
evolving beliefs, rather than just a fixed baseline (sounds a lot like GANs!).

7 Estimating the Partition Function
It might be the case that we wish to compute the normalized likelihood of the data (e.g., for mon-
itoring training performance). For this we will need to estimate Z(Θ). For instance, assume we
have pA(x; ΘA) =

1
ZA

p̃A(x; ΘA) and pA(x; ΘA) =
1
ZB

p̃B(x; ΘB). Suppose we have a test sample
of m examples x(1), ..., x(m). If

∑
i log pA(x

(i); ΘA) −
∑

i log pB(x
(i); ΘB) > 0, then model A >

B, but to evaluate the expression we need the partition function. We can rearrange things so that
we only need the ratio, but we still indirectly need some estimate of the partition function:∑

i

log pA(x
(i); ΘA)−

∑
i

log pB(x
(i); ΘB) =

∑
i

(log
p̃A(x

(i); ΘA)

p̃B(x(i); ΘB)
)−m log

Z(ΘA)

Z(ΘB)

We estimate the ratio using different importance sampling routines.

7.1 Simple importance sampling
let p0 = 1

Z0
p̃0(x) be a tractable sampling and evaluation proposal distribution (something we will

try to get to match p1).

Z1 =

∫
p̃1(x)dx

=

∫
p0(x)

p0(x)
p̃1(x)dx

= Z0

∫
p0(x)

p̃1(x)

p̃0(x)
dx

=⇒ Z̃1 =
Z0

K

K∑
k=1

p̃1(x
(k))

p̃0(x(k))
s.t.x(k) ∼ p0

Our ratio estimate r̃ = 1
K

∑K
k=1

p̃1(x(k))

p̃0(x(k))
x(k) ∼ p0

10

Practical considerations. If p0 is close to p1 then the above is a good estimator. However p1 is
usually complicated and high-dimensional, so most samples from p0 end up being low under p1.
Because of this, the estimate Z̃1 also tends to have high variance. When p0 is not close to p1 we
can use other methods such as Annealed Importance Sampling.

7.2 Annealed Importance Sampling
When DKL(p0∥p1) is high, we can make use of Annealed Importance Sampling (AIS). The in-
tuition behind this approach is that we try to bridge the gap between p0 and p1 with a bunch of
intermediate distributions. We essentially learn the ratio Z1

Z0
as Πn−1

j=0

Zηj+1

Zηj
. As long as pηj and pηj+1

we can use simple importance sampling to get each
Zηj+1

Zηj
.

Practical considerations. A common and popular choice for intermediate distributions is

pηjαp
ηj
1 p

1−ηj
0

In order to sample from such a distribution we define Markov chain transition functions Tηj(x
′|x)

s.t. pηj(x) =
∫
pηj(x

′)Tηj(x|x′)dx′ This allows us to define our AIS sampling strategy:

Algorithm 5: AIS Sampling Strategy

1 for k = 1:K do
2 x

(k)
η1 ∼ p0(x)x

(k)
η2 ∼ Tη1(x

(k)
η2 |x

(k)
η1)...

3 x
(k)
ηn ∼ Tηn−1(x

(k)
ηn |x

(k)
ηn−1)

4 end

The importance weight for any instance xk is w(k) = Πn−1
j=0

p̃ηj+1 (x
(k)
ηj+1

)

p̃ηj (x
(k)
ηj+1

)
(using logw(k) for sta-

bility when necessary). We can approximate the ratio Z1

Z0
≈ 1

K

∑K
k=1w

(k).

Practical Considerations. AIS is computationally intensive to run, and as such if the divergence
between p0 and p1 is not that great, you can use something like Bridge sampling.

7.3 Bridge Sampling
Instead of chaining together a bunch of intermediate distributions we can use just one p∗, called
the bridge distribution.

Z1

Z0

≈

∑K
k=1

p̃∗(x
(k)
0)

p̃0(x
(k)
0)∑K

k=1
p̃∗(x

(k)
1)

p̃1(x
(k)
1)

(6)

11

We know that the optimal bridge distribution is:

p(opt)∗ ∝ p̃0(x)p̃1(x)

rp̃0(x) + p̃1(x)
(7)

The strategy for achieving it is to estimate the ratio r̃ and iterate.

Practical Considerations. If there is a large overlap of support between p∗ and p0, as well as
between p∗ and p1, then the KL divergence between p0 and p1 can be much larger than for standard
importance sampling.

Extensions. Linked Importance Sampling, described by [5], connects AIS and Bridge sampling
to allow for a more flexible learning method that is not as sensitive to the KL-divergence between
p0 and p1. [2] makes use of bridge sampling estimates of short Markov Chains (from parallel
tempering), with AIS estimates overtime to directly estimate the Z of an RBM every iteration.

References
[1] Y. Dauphin and Y. Bengio. Stochastic ratio matching of rbms for sparse high-dimensional

inputs. In Advances in Neural Information Processing Systems, pages 1340–1348, 2013.

[2] G. Desjardins, Y. Bengio, and A. C. Courville. On tracking the partition function. In Advances
in neural information processing systems, pages 2501–2509, 2011.

[3] S. Ermon. Gibbs sampling. https://ermongroup.github.io/cs323-notes/
probabilistic/gibbs/.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[5] R. M. Neal. Estimating ratios of normalizing constants using linked importance sampling.
arXiv preprint math/0511216, 2005.

12

