
DEEP GENERATIVE MODELS (PART 2)

Woojeong Jin
woojeong.jin@usc.edu

September 17, 2019

1 Back-Propagation through Random Operations

Traditional neural networks implement a deterministic transformation of some input variables x. When developing
generative models, we often wish to extend neural networks to implement stochastic transformations of x. One
straightforward way to do this is to augment the neural network with extra inputs z that are sampled from some simple
probability distribution, such as a uniform or Gaussian distribution. The neural network can then continue to perform
deterministic computation internally, but the function f(x, z) will appear stochastic to an observer who does not have
access to z.

As an example, let us consider the operation consisting of drawing samples y from a Gaussian distribution with mean µ
and variance σ2:

y ∼ N(µ, σ2) (1)

Because an individual sample of y is produced not by a function, but rather by a sampling process whose output changes
every time we query it, it may seem counterintuitive to take the derivatives of y with respect to the parameters of its
distribution, µ and σ2. However, we can rewrite the sampling process as transforming an underlying random value
z ∼ N(z; 0, 1) to obtain a sample from the desired distribution:

y = µ+ σz (2)

We are now able to back-propagate through the sampling operation, by regarding it as a deterministic operation with an
extra input z.

1.1 Back-Propagating through Discrete Stochastic Operations

Suppose that the model takes inputs x and parameters θ, both encapsulated in the vector ω, and combines them with
random noise z to produce y:

y = f(z;ω) (3)

Because y is discrete, f must be a step function. The derivatives of a step function are not useful at any point. Right at
each step boundary, the derivatives are undefined. The large problem is that the derivatives are zero almost everywhere
on the regions between step boundaries. The derivatives of any cost function J(y) therefore do not give any information
for how to update the model parameters θ.

The REINFORCE algorithm provides a framework defining a family of simple but powerful solutions [1]. The core
idea is that even though J(f(z;ω)) is a step function with useless derivatives, the expected cost Ez∼p(z)J(f(z;ω)) is
often a smooth function amenable to gradient descent.

The simplest version of REINFORCE can be derived by simply differentiating the expected cost:

Ez[J(y)] =
∑
y

J(y)p(y) (4)

∂E[J(y)]
∂ω

=
∑
y

J(y)
∂p(y)

∂ω
(5)

=
∑
y

J(y)p(y)
∂ log p(y)

∂ω
(6)

' 1

m

m∑
y(i)∼p(y),i=1

J(y(i))
∂ log p(y(i))

∂ω
. (7)

Equation (5) relies on the assumption that J does not reference ω directly. It is trivial to extend the approach to relax
this assumption. Equation (6) exploits the derivative rule for the logarithm. ∂ log p(y)

∂ω = 1
p(y)

∂p(y)
∂ω .

One issue with the simple REINFORCE estimator is that it has a very high variance, so that many samples of y need to
be drawn to obtain a good estimator of the gradient, or equivalently, if only one sample is drawn, SGD will converge
very slowly and will require a smaller learning rate. It is possible to considerably reduce the variance of that estimator
by using variance reduction methods. The idea is to modify the estimator so that its expected value remains unchanged
but its variance gets reduced. In the context of REINFORCE, the proposed variance reduction methods involve the
computation of a baseline that is used to offset J(y).

Ep(y)

[
(J(y)− b(ω))∂ log p(y)

∂ω

]
= Ep(y)

[
J(y)

∂ log p(y)

∂ω

]
− b(ω)Ep(y)

[
∂ log p(y)

∂ω

]
(8)

= Ep(y)

[
J(y)

∂ log p(y)

∂ω

]
(9)

Ep(y)

[
∂ log p(y)

∂ω

]
=
∑
y

p(y)
∂ log p(y)

∂ω
(10)

=
∑
y

∂p(y)

∂ω
(11)

=
∂

∂ω

∑
y

p(y) =
∂

∂ω
1 = 0 (12)

2 Directed Generative Nets

Directed graphical models make up a prominent class of graphical models. While directed graphical models have been
very popular within the greater machine learning community, within the smaller deep learning community they have
until roughly 2013 been overshadowed by undirected models such as the RBM. In this section we review some of the
standard directed graphical models that have traditionally been associated with the deep learning community.

2.1 Sigmoid Belief Networks

Sigmoid belief networks [2] are a simple form of directed graphical model with a specific kind of conditional probability
distribution. In general, we can think of a sigmoid belief network as having a vector of binary states s, with each
element of the state influenced by its ancestors:

p(si) = σ

∑
j<i

Wj,isj + bi

 . (13)

The most common structure of sigmoid belief network is one that is divided into many layers, with ancestral sampling
proceeding through a series of many hidden layers and then ultimately generating the visible layer. This structure is
very similar to the deep belief network, except that the units at the beginning of the sampling process are independent
from each other, rather than sampled from a restricted Boltzmann machine.

2

2.2 Differentiable Generator Networks

Many generative models are based on the idea of using a differentiable generator network. The model transforms
samples of latent variables z to samples x or to distributions over samples x using a differentiable function g(z; θ(g)),
which is typically represented by a neural network. This model class includes variational autoencoders, which pair
the generator net with an inference net; generative adversarial networks, which pair the generator network with a
discriminator network; and techniques that train generator networks in isolation.

2.3 Variational Autoencoders

The variational autoencoder, or VAE [3, 4], is a directed model that uses learned approximate inference and can be
trained purely with gradient-based methods.

Figure 1: Variational Autoencoders.

To generate a sample from the model, the VAE first draws a sample z from the code distribution pmodel(z). The sample
is then run through a differentiable generator network g(z). Finally, x is sampled from a distribution pmodel(x; g(z)) =
pmodel(x|z). During training, however, the approximate inference network (or encoder) q(z|x) is used to obtain z, and
pmodel(x|z) is then viewed as a decoder network.

The key insight behind variational autoencoders is that they can be trained by maximizing the variational lower bound
L(q) associated with data point x:

L(q) = Ez∼q(z|x) log pmodel(x|z)−DKL(q(z|x)||pmodel(z)) (14)

We recognize the first term as the reconstruction log-likelihood found in other autoencoders. The second term tries to
make the approximate posterior distribution q(z|x) and the model prior pmodel(z) approach each other.

The variational autoencoder approach is elegant, theoretically pleasing, and simple to implement. It also obtains
excellent results and is among the state-of-the-art approaches to generative modeling. Its main drawback is that samples
from variational autoencoders trained on images tend to be somewhat blurry. The causes of this phenomenon are not
yet known.

2.4 Generative Adversarial Networks

Generative adversarial networks, or GANs [5], are another generative modeling approach based on differentiable
generator networks. The main motivation for the design of GANs is that the learning process requires neither
approximate inference nor approximation of a partition function gradient.

Generative adversarial networks are based on a game theoretic scenario in which the generator network must compete
against an adversary. The generator network directly produces samples x = g(z; θ(g)). Its adversary, the discriminator
network, attempts to distinguish between samples drawn from the training data and samples drawn from the generator.
The discriminator emits a probability value given by d(x; θ(d)), indicating the probability that x is a real training
example rather than a fake sample drawn from the model.

The simplest way to formulate learning in generative adversarial networks is as a zero-sum game, in which a function
v(θ(g), θ(d)) determines the payoff of the discriminator. The generator receives −v(θ(g), θ(d)) as its own payoff.
During learning, each player attempts to maximize its own payoff, so that at convergence

g∗ = argmin
g

max
d

v(g, d). (15)

The default choice for v is

v(θ(g), θ(d)) = Ex∼pdata
log d(x) + Ex∼pmodel

log(1− d(x)). (16)

This drives the discriminator attempt to learn to correctly classify samples as real or fake. Simultaneously, the
generator attempts to fool the classifier into believing its samples are real. At convergence, the generator’s samples are
indistinguishable from real data, and the discriminator outputs 1

2 everywhere. The discriminator may then be discarded.

3

Figure 2: Generative Adversarial Networks.

2.5 Generative Moment Matching Networks

Generative moment matching networks (GMMNs) [6] are another form of generative model based on differentiable
generator networks. Unlike VAEs and GANs, they do not need to pair the generator network with any other net-
work—neither an inference network, as used with VAEs, nor a discriminator network, as used with GANs. Training a
GAN, however, requires careful optimization of a difficult minmax problem. Instead, generative moment matching
networks can be trained by minimizing a cost function called maximum mean discrepancy, or MMD. GMMNs are
similar to GANs, but they replace the Discriminator with the MMD measure, making their optimization more stable.
Maximum mean discrepancy is a simple objective that can be interpreted as matching all orders of statistics between a
dataset and samples (generated dataset) from the model.

Suppose we are given two sets of samples X = {xi}Ni=1 and Y = {yj}Mj=1 and are asked whether the generating
distributions PX = PY . Maximum mean discrepancy is a frequentist estimator for answering this question, also known
as the two sample test. The idea is simple: compare statistics between the two datasets and if they are similar then the
samples are likely to come from the same distribution.

L2
MMD =

∥∥∥∥∥ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
i=1

φ(yi)

∥∥∥∥∥
2

(17)

where φ is a kernel function.

2.6 Convolutional Generative Networks

When generating images, it is often useful to use a generator network that includes a convolutional structure. To do so,
we use the “transpose” of the convolution operator, described in Figure 3. This approach often yields more realistic
images and does so using fewer parameters than using fully connected layers without parameter sharing.

Figure 3: Transposed Convolution.

Convolutional networks for recognition tasks have information flow from the image to some summarization layer at the
top of the network, often a class label. As this image flows upward through the network, information is discarded as the
representation of the image becomes more invariant to nuisance transformations. In a generator network, the opposite is
true. Rich details must be added as the representation of the image to be generated propagates through the network,
culminating in the final representation of the image, which is of course the image itself, in all its detailed glory, with
object positions and poses and textures and lighting.

2.7 Auto-Regressive Networks

Auto-regressive networks are directed probabilistic models with no latent random variables. Auto-regressive models
are well known for sequence data. The conditional probability distributions in these models are represented by neural

4

networks (sometimes extremely simple neural networks, such as logistic regression). The graph structure of these
models is the complete graph. They decompose a joint probability over the observed variables using the chain rule
of probability to obtain a product of conditionals of the form P (xd|xd−1, ..., x1). Such models have been called
fully-visible belief networks (FVBNs) and used successfully in many forms, first with logistic regression for each
conditional distribution, and then with neural networks with hidden units.

This graphical model represents the joint distribution of random variables x1, ..., xn with

P (x1, ..., xn) =

n∏
i=1

p(xi|x1, ..., xi−1). (18)

2.8 Linear Auto-Regressive Networks

The simplest form of auto-regressive network has no hidden units and no sharing of parameters or features. Each
P (xd|xd−1, ..., x1) is parametrized as a linear model (linear regression for real-valued data, logistic regression for
binary data, softmax regression for discrete data).

P (xi = 1|x1, ..., xi−1) = sigmoid(w0 +
∑
j<i

wjxj) (19)

Figure 4: Fully visible belief network.

Linear auto-regressive networks are essentially the generalization of linear classification methods to generative modeling.
They therefore have the same advantages and disadvantages as linear classifiers. Like linear classifiers, they maybe
trained with convex loss functions and sometimes admit closed form solutions (as in the Gaussian case). Like linear
classifiers, the model itself does not offer a way of increasing its capacity, so capacity must be raised using techniques
like basis expansions of the input or the kernel trick.

2.9 Neural Auto-Regressive Networks

Neural auto-regressive networks [7] have the same left-to-right graphical model as logistic auto-regressive networks
(figure 4) but employ a different parametrization of the conditional distributions within that graphical model structure.
The new parametrization can also improve generalization by introducing a parameter sharing and feature sharing
principle common to deep learning in general. The models were motivated by the objective of avoiding the curse of
dimensionality arising out of traditional tabular graphical models.

P (xi = 1|x1, ..., xi−1) = P (xi = 1|gi(x1, ..., xi−1)) (20)

where gi(x1, ..., xi−1) is the vector-value ouput of the i-th group of output units, and it gives the value of the parameters
of the distribution of xi.

5

Figure 5: A neural auto-regressive network predicts the i-th variable xi from the i−1 previous ones, but is parametrized
so that features (groups of hidden units denoted hi) that are functions of x1, ..., xi can be reused in predicting all the
subsequent variables xi+1, xi+2, ..., xd.

2.10 Neural Auto-Regressive Density Estimator (NADE)

The neural auto-regressive density estimator (NADE) [8] is a very successful recent form of neural auto-regressive
network. The connectivity is the same as for the original neural auto-regressive network of [7], but NADE introduces an
additional parameter sharing scheme. The parameters of the hidden units of different groups j are shared.

P (xi = 1|x1, ..., xi−1) = sigmoid(ci + Vi,:hi) (21)
hi = sigmoid(b+W:,1x1 + ...+W:,i−1xi−1) (22)

Figure 6: Neural Auto-regressive Density Estimator.

Training under NADE is done by maximizing the average log-likelihood of the parameters given the training set:

1

N

N∑
i=1

log p(x(i)) =
1

N

N∑
i=1

D∑
k=1

log p(x
(i)
k |x

(i)
<k). (23)

References

[1] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

[2] Radford M Neal. Learning stochastic feedforward networks. Department of Computer Science, University of
Toronto, 64:1283, 1990.

[3] Diederik P Kingma. Fast gradient-based inference with continuous latent variable models in auxiliary form. arXiv
preprint arXiv:1306.0733, 2013.

[4] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

6

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[6] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International Conference on
Machine Learning, pages 1718–1727, 2015.

[7] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer neural networks. In
Advances in Neural Information Processing Systems, pages 400–406, 2000.

[8] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 29–37, 2011.

7

	Back-Propagation through Random Operations
	Back-Propagating through Discrete Stochastic Operations

	Directed Generative Nets
	Sigmoid Belief Networks
	Differentiable Generator Networks
	Variational Autoencoders
	Generative Adversarial Networks
	Generative Moment Matching Networks
	Convolutional Generative Networks
	Auto-Regressive Networks
	Linear Auto-Regressive Networks
	Neural Auto-Regressive Networks
	Neural Auto-Regressive Density Estimator (NADE)

