
Chapter 7: Regularization (Part 1)

Qinyuan Ye
qinyuany@usc.edu

Introduction

We want to make an algorithm perform well on the training data, and also on new inputs. The
collection of strategies addressing this issue is regularization – reduce the test error, possibly at the
expense of increased training error.

Some common strategies include:

• Add restrictions on parameter values (hard constraint)
• Add extra terms in objective function (soft constraint)

– Encode specific patterns
– Express preference for a simpler model
– Make under-determined problem determined

• Ensemble methods

Controlling the complexity of a model is not by controlling its size or number of parameters. Rather,
empirically we found large models that have been regularized properly are the best-fitting models.

1 Parameter Norm Penalties

Limit the capacity of models by adding a parameter norm penalty Ω(θ). The regularized objective
function becomes:

J̃(θ,X,y) = J(θ,X,y) + αΩ(θ) (1)

where J̃(θ,X,y) is regularized objective, and J(θ,X,y) is original objective. Additionally,
Ĵ(θ,X,y) means a quadratic approximation of J(θ,X,y) in the following parts. These notations
are used throughout this handout.

• Choice of Ω indicates preference of solution;
• α ∈ [0,∞) determines the contribution of penalty term; Sometimes desirable to use different
α for different layers, but this increase hyper-parameter search space, so usually we use the
same α throughout the model;

• In affine transformations, we usually only regularize weight parameters (w, how two
variables interact), but leave bias terms (b) un-regularized (require less data than weights to
fit accurately); in practice, regularizing b may lead to under-fitting.

1.1 L2 Parameter Regularization

Method. Add a regularization term Ω(θ) = 1
2 ||w||2 to the objective function, so that

J̃(w,X,y) =
α

2
wTw + J(w,X,y) (2)

CSCI 699, September 17, 2019.

Alternative Names. Weight decay, ridge regression, and Tikhonov regularization.

Studying the gradient. In one single step (micro perspective), if we take the gradient of Eq. (2),

∇wJ̃(w,X,y) = αw +∇wJ(w,X,y) (3)

Denoting ε as learning rate in stochastic gradient descent (SGD), the update to weight w is

w ← (1− εα)w − ε∇wJ(w;X,y) (4)

Therefore, in one single step, the weight vector shrinks by a constant factor, compared to standard
SGD. What happens if we look from a macro perspective (i.e. how L2 regularization takes effect
in the whole training process)? Denote w∗ = arg minw J(w) and w̃ = arg minw J̃(w). We have
Ĵ(w), the quadratic approximation of J(w) with Taylor series:

Ĵ(w) ≈ J(w∗) +
1

2
(w −w∗)TH(w −w∗) (5)

whereH is the Hessian matrix of J with respect to w evaluated atw∗. Because w∗ is the optimum
for J , there is no first-order term in this Taylor series; also,H is positive semi-definite for this reason,
and can be decomposed toH = QΛQT .

To solve w̃, the solution for regularized objective J̃ ,∇wJ̃ must be zero,

∇wJ̃ = ∇wĴ +∇w(
α

2
wTw) (6)

H(w̃ −w∗) + αw̃ = 0 (7)

w̃ = (H + αI)−1Hw∗ = Q(Λ + αI)−1ΛQTw∗ (8)

Therefore, from the macro perspective, L2 regularization is re-scaling w∗ along the axes defined by
the eigen-vectors ofH . Specifically, the component of w∗ that is aligned with the i-th eigen-vector
ofH is re-scaled by a factor of λi

λi+α
. When λi � α, effect of regularization is small. When λi � α,

component will shrink to nearly zero.

Example of Linear Regression. Conclusions of this example may be used in later parts.

w/o regularization w/ regularization
objective function (Xw − y)T (Xw − y) (Xw − y)T (Xw − y) + α

2w
Tw

solution w = (XTX)−1XTy w = (XTX + αI)−1XTy

The covariance matrix ofX is 1
mX

TX . L2 regularization replacesXTX withXTX + αI in the
solution, which can be interpreted as the models “perceive” the inputX as having higher variance.

1.2 L1 Parameter Regularization

Method. Add a regularization term Ω(θ) = ||w||1 =
∑
i |wi| to the objective function.

Studying the gradient. Corresponding gradient,

∇wJ̃(w;X,y) = αsign(w) +∇wJ(w;X,y) (9)

Suppose (1) we’re fitting a linear regression model, with quadratic loss, (2) the Hessian matrix of
objective function is diagonal, and (3) the original optimal without regularization is w∗. In this case,
the analytical solution for wi becomes

wi = sign(w∗i) max

{
|w∗i | −

α

Hi,i

}
(10)

That is, where w∗i > 0, if it is small (< α
Hi,i

), it will be regularized to zero; otherwise wi is moved
closer to zero by α

Hi,i
.

2

Compare with L2 regularization. L1 regularization results in a more sparse solution. This
property enables L1 regularization to be used for feature selection (e.g. LASSO).

2 Norm Penalties as Constrained Optimization

Apart from adding penalty term Ω(θ) to objective function J and try to minimize their sum J̃ , we
can also make sure it is small by optimizing J with a constraint Ω(θ) < k. This can be done by
constructing a generalized Lagrange function, consisting of original objective function plus a set of
penalties:

L(θ, α;X,y) = J(θ;X,y) + α(Ω(θ)− k) (11)

The solution will be:
θ∗ = argmin

θ
max
α,α≥0

L(θ, α) (12)

Note that both θ and α are variables in this objective function. When α∗ is fixed (say, we already
know the best α), the optimization problem becomes

θ∗ = argmin
θ
L(θ, α∗) = argmin

θ
J(θ;X,y) + α∗Ω(θ) (13)

which is the same as regularization with parameter norm penalty. For example, if Ω is L2 norm, we
can think of it as limiting weights to be in a L2 ball.

Benefits of regularization as constraints:

• We can specify a concrete constraint region, while the effect of adjusting α for Ω(θ) is
vague. We can take a step with stochastic gradient descent, and re-project θ back to the
feasible region Ω(θ) < k.

• We can avoid getting stuck in local minima, which is common with regularization term in
objective function. These constraints only take effect when the weights attempt to leave the
constraint region.

• More stable optimization procedure. A large learning rate may result in positive feedback
loop. Explicit constraints with re-projection prevent this.

3 Regularization and Under-Constrained Problems

In a linear regression problem, when the number of instances is smaller than the number of variables,
the problem is under-constrained, and its closed form solution w = (XTX)−1XTy can not be
calculated. In a logistic regression problem, when the two classes are linearly separable with vector
w, 2w will also be a feasible solution. An iterative optimization algorithm may keep increasing the
magnitude of w and never stops.

However, when we add a regularization term to loss function, convergence is guaranteed. For example,
w will not be updated to 2w because the likelihood loss is not decreased, while the regularization
term is huge.

The idea of using regularization to solve under-determined problems extends beyond machine
learning. In linear algebra, we have Moore-Penrose pseudo-inverse of matrix X , which is
X+ = limα→0(XTX + αI)−1XT . This is exactly the same as performing linear regression
with weight decay. We can interpret the pesudo-inverse as stabilizing under-determined problems
using regularization.

4 Dataset Augmentation

Create fake data and add it to the training set. Easy for classification task, which takes in a high-
dimensional input x and summarize it with a single category identity y. We can generate new (x, y)
pairs by transforming the x inputs in the training set.

Difficult for other tasks such as density estimation, because to generate new fake data we have to first
know the density.

3

Very effective for a specific classification problem: object recognition. Moving a few pixels in each
direction, rotating and scaling are effective operations. Still, we need to make sure we don’t do
rotation or mirroring for classifying ’b’ and ’d’ or ’6’ and ’9’.

Injecting noise can also be considered as a form of augmentation. This can be either done with input,
or in hidden layers. This can be applied to supervised learning, as well as unsupervised learning
(auto-encoders). Dropout, can also be consider as multiplying by noise.

For fair comparison between models, data augmentation should be taken into consideration. Model
A (with augmentation) outperforming Model B (without augmentation) does not necessarily mean
Model A is better. However, such judgements are subjective. Usually, operations generally applicable
to are considered part of the algorithm (e.g. adding Gaussian noise to input), while operations specific
to one domain is considered preprocessing (e.g. cropping an image).

5 Noise Robustness

Adding noise to model weights. usually used in recurrent neural networks. Can be interpreted
as a stochastic implementation of Bayesian inference over the weights. The Bayesian treatment of
learning would consider model weights to be uncertain. The weights should be represented with a
distribution. Adding noise to weights reflects such uncertainty.

Noise applied to weights are also encouraging the stability of the model. Consider a regression
problem, the objective function is

J = Ep(x,y) (ŷ(x)− y)2

We now add a random perturbation εW ∼ N (ε; 0, ηI) to network weights. The perturbed model
becomes ŷεW (x). The objective function becomes

J̃W = Ep(x,y,εW)

[
(ŷ

W
(x)− y)2

]
= Ep(x,y,εW)

[
ŷ2εW (x)− 2yŷεW (x) + y2

]
(15)

With a small η, minimizing J̃ is equivalent to minimizing J with additional regularization term
ηEp(x,y) [||∇W ŷ(x)||]. This term pushes the model into regions where model is relatively insensitive
to small variation in the weights (minima surrounded by flat region).

Injecting noise at output stage. If the label y in dataset is wrong, maximizing log p(y|x) becomes
harmful. To deal with this, we explicitly model the noise on the labels. For constant ε� 1, label y is
correct with 1−ε probability. Label smoothing tries to soften the target of [0, 1, 0, 0] to [ε3 , 1−ε,

ε
3 ,

ε
3].

The output of softmax could never be 0 or 1 exactly, so model may never ‘converge’ and the weights
are still getting larger. Weight decay may solve this issue, but at the cost of encouraging wrong
classification. Label smoothing prevent the pursuit of fitting hard probabilities, while still encourage
correct classification.

6 Semi-supervised Learning

In the paradigm of semi-supervised learning, both unlabeled examples from P (x) and labeled
examples from P (x, y) are used to estimate P (y|x) or predict y from x.

One way of semi-supervised learning is combining unsupervised and supervised components in one
model. Unsupervised learning first learns how to group examples in representation space by learning
a representation h = f(x). A long-standing approach is to apply principal components analysis for
creating representation. Then a classifier in representation space is adopted. Usually a linear classifier
achieves better generalization.

Another way of semi-supervised learning is to construct a generative model of either P (x) or
P (x, y), and a discriminative model of P (y|x). The two models share parameters. One can trade-
off the supervised criterion (− logP (y|x) with unsupervised (or generative) one (− logP (x) or
− logP (x, y). The generative criterion expresses a particular form of prior belief about the solution
to the supervised learning problem.

4

7 Multitask Learning

When part of a model is shared across tasks, this part is more constrained toward good values, often
yielding better generalization. [maybe a figure here.]

Under certain assumptions, the generalization error bound is improved because of shared parameters.
The prior belief of multi-task learning is that, among the factors that explain the variations observed
in the data associated with the different tasks, some are shared across two or more tasks.

8 Early Stopping

When training models with over-sufficient representational ability, it begins to overfit - training error
decrease steadily over time, but validation error begins to rise. A effective and simple way to deal
with this is to store the model when validation error improves, and terminate training when validation
error is not improved for a pre-defined number of iterations.

One way to think of early stopping is to consider number of training steps as a hyperparameter tuned
on validation set. This hyperparameter is special in that we don’t have to try out different values
by re-training the model. The only cost is running the validation set periodically during training.
Another cost is the memory used to save the best set of parameters so far. This is negligible because
the parameters can be slowly written into disks.

Early stopping is unobstrusive, as it makes almost no change in training procedure, the objective
function, or the feasible region for parameters, and thus will not damage learning dynamics. This is
in contrast with weight decay, where a bad local optimum with extremely small weights is chosen if
not used carefully.

Early stopping requires a validation set, which means some training data was not included into the
training process. To utilize data in validation set, there are two strategies. (1) Re-train the whole
model with the same number of steps, or same number of passes on the whole dataset; (2) Keep the
parameters in the previous training process, and continue training with the whole dataset. Stop when
the loss per instance on validation set falls below that of original training set at the termination of
previous training.

How early stopping regularize the model. Given initial parameter value θ0, we take τ optimiza-
tion steps with learning rate ε, and bounded gradients. The reachable destination θτ is limited. This
is a straight forward way of understanding early stopping as regularization.

Actually, in the case of linear models, early stopping is equivalent to L2 regularization.

Quadratic approximation of objective function J(θ) near empirically optimial value of w∗

Ĵ(θ) = J(θ∗) +
1

2
(w −w∗)TH(w −w∗) (16)

whereH is the Hessian matrix of J with respect to w evaluated at w∗. Given w∗ is the minimum of
J(w), H is positive semidefinite and can be decomposed to H = QΛQT , where Λ is a diagonal
matrix andQ is an orthonormal basis of eiginvectors.

In each optimization step, we have

w(τ) = w(τ−1) − ε∇wĴ(w(τ−1)) = w(τ−1) − εH(w(τ−1) −w∗) (17)

w(τ) −w∗ = (I − εH)(w(τ−1) −w∗) (18)

ReplacingH withQΛQT and changing the representation, results in

QT (H(τ) −H∗) = (I − εΛ)QT (w(τ−1) −w∗) (19)

Assuming w(0) = 0 and ε is small enough for |1− ελi| < 1, we have

QTw(τ) = [I − (I − εΛ)τ]QTw∗ (20)

5

Recall that in L2 regularization

QT w̃ =
[
I − (Λ + αI)−1α

]
QTw∗ (21)

As long as (I − εΛτ) = (Λ + αI)−1α, the two regularization methods are equivalent in terms of
the resulting minimum. A trajectory of length τ ends at a point that corresponds to a minimum of the
L2-regularized objective. However, early stopping does more than restricting the trajectory length;
instead, it monitors validation error in order to stop at the a particularly good point. Early stopping
therefore has the advantage over weight decay in that it automatically determines the correct amount
of regularization, while with weight decay a hyper-parameter needs to be chosen.

6

	Parameter Norm Penalties
	L2 Parameter Regularization
	L1 Parameter Regularization

	Norm Penalties as Constrained Optimization
	Regularization and Under-Constrained Problems
	Dataset Augmentation
	Noise Robustness
	Semi-supervised Learning
	Multitask Learning
	Early Stopping

