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Deep learning algorithms involve optimization in many contexts

• Inference in PCA involves an optimization problem
• Restricted Boltzmann Machines are learned via approximation of maximum likelihood
• In many probabilistic graphical models, we maximize likelihood by maximizing the evidence

lower bound to do inference

Most of these optimization problems are concerned with training deep neural networks, and because
training is so costly we have a specialized set of methods developed for this

We will be concerned primarily for one particular case of optimization:

arg min
Θ

J(Θ)(+αΩ(Θ))

The layout of the lecture will be as follows:

1. How training optimization for machine learning differs from pure optimization
2. Concrete challenges for training deep models
3. Defining several algorithms (& strategies for Θ initialization)
4. Review several higher order strategies that combine simple ones
5. Practical overall strategies for an entire deep learning pipeline (Ch. 11)

1 How Learning differs from Pure Optimization

The primary difference between machine learning and pure optimization is that machine learning
often acts indirectly Typically the machine learning learning set up is as follows:

• Goal: increase some performance metric P
• Method: minimize some J(Θ) with hopes of optimizing P

Pure optimization is often just concerned with optimizing J(Θ) directly

Notation. we discuss J(Θ) as a supervised learning unregularized cost function. The most straight-
forward function is the empirical risk

J(Θ) = E
(x,y)∼p̂data

L(f(x; Θ), y)

• L is the per-example loss function
• f(x; Θ) is the predicted output for x
• p̂data is the empirical distribution

In a perfect world we would try to use pdata the data-generating distribution s.t. J∗(Θ) =
E(x,y)∼pdata

to compute the expected generalization error.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



As a comparison, an unsupervised cost function (e.g., for k-Means) might be:

J(Θ) =

N∑
n=1

K∑
k=1

1[xn∈k]‖xn − µk‖2

And the regularized version of the supervised empirical risk might look like:

J(Θ) = E
(x,y)∼p̂data

L(f(x; Θ), y) + αΩ(Θ)

When using a set of m training examples, the empirical risk can be defined as the average loss over
that set:

J(Θ) = E
(x,y)∼p̂data

[L(f(x; Θ), y)] =
1

m

m∑
i=1

L(f(x(i); Θ), y(i))

Optimizing this is called empirical risk minimization. Two problems arise with ERM:

1. Empirical risk is a proxy for true risk, but ERM is prone to overfitting
2. Many popular loss functions have no useful (or tractable) gradient

1.1 Surrogate Loss Functions & Early Stopping

Often exactly minimizing a loss function (e.g., expected 0-1 loss) is intractable. Because of this we
often use a proxy, or surrogate loss function, that is easier to minimize. For example, we can use
negative log-likelihood of the correct class as a surrogate for the 0-1 loss.

A benefit of using surrogates is that they can actually learn more

• When using a log-likelihood surrogate the test set 0-1 loss might keep decreasing after
training set 0-1 loss reaches 0 but continuing minimizing negative log-likelihood

Another difference between pure and machine learning optimization is that we will often do something
like early stopping based on the true underlying loss function. This helps to prevent overfitting
and leaves large gradients in the surrogate loss (which in pure optimization you usually leave small
gradients in the function).

1.2 Batch and Mini-batch

Optimization in machine learning typically computes each Θ pdate based on an expected value of the
cost function estimated on only a subset of x.

For example we can decompose MLE as:

ΘMLE = arg max
Θ

M∑
i=1

log pmodel(x
(i), y(i); Θ)

Maximizing this is equivalent to maximizing:

J(Θ) = E
(x,y)∼p̂data

[log pmodel(x, y; Θ)]

but if we want to maximize it via the gradient

∇ΘJ(Θ) = E
(x,y)∼p̂data

[∇Θ log pmodel(x, y; Θ)]

Not only is this hard to compute sometimes, but it’s expensive to do it over the entire dataset

Recall: the standard error of the mean = σ√
n

.

If your mean is the gradient, using 10,000 examples only reduces the standard error by a factor of
10 when compared to 100 examples. You may also find many examples that provide very similar
contributions to∇Θ.
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These two ideas motivate the Minibatch / Minibatch Stochastic Gradient Descent approach: one
can relatively cheaply compute an approximation of the gradient by using m < n training examples.
Deterministic / Batch Gradient Descent uses the whole training set. Stochastic Gradient Descent
is usually defined as using just one training example, but in this book sometiems SGD and Minibatch
are conflated.

1.2.1 Practical Tips

• Larger batch sizes provide more accurate estimates of the gradient
• When training in parallel, use some absolute minimum batch size

– too small and you get no reduction in time per minibatch
• Max batch size will be limited by available memory
• Sometimes you get hardware acceleration with specific sizes of arrays

– GPUs often get better runtimes on powers of 2 (16-256)
• Small batches can offer a regularizing effect

– Generalization error is often best with batch size of 1
– To run this might require a small learning rate, as to maintain stability (there will be

high variance in the estimate of the gradient)

A good motivation for this last point is that the first pass over each minibatch follows the gradient of
the true generalization error. On subsequent passes the estimate becomes biased (due to sampling
already seen values)

Similarly, some algorithms are more sensitive to sampling error than others, either because they use
information that is difficult to estimate accurately with few examples, or because they use information
in ways that amplifies sampling error

For instance, methods that compute updates based only on the gradient g are usually robust and can
handle smaller batch sizes (e.g., 100). Second-order methods, those that rely on the Hessian H and
computing updates like H−1g typically need larger batch sizes like 10,000 to minimize fluctuations
in the estimate

Practical considerations. It is important to sample minibatches randomly to ensure independent
samples. It is also important that two subsequent minibatches be independent. For example, make
sure to shuffle sentences in your document!

As datasets grow in size, it is more common to make only one pass or even an incomplete pass over
the training set

• Overfitting is not an issue when using extremely large datasets, but underfitting and compu-
tational complexity are

2 Challenges in Neural Network Optimization

Even the shortcut of trying to turn to convex optimization has complications in machine learning.
Non-convex optimization is an important problem in deep learning.

2.1 Ill Conditioning

One of the most general problems in numerical optimization is the ill-conditioning of the Hessian
Matrix H.

• This can manifest by getting SGD stuck in the way that even very small steps increase the
cost function.

Recall: The second-order Taylor series expansion of a cost function
x = x0 − εgf(x(0) − εg)

≈ f(x(0))− εgT g +
1

2
ε2gTHg
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Figure 1: A growing gradient norm does not necessarily mean learning improves.

Ill-conditioning becomes a problem when 1
2ε

2gTHg > εgT g, which means that learning will become
very slow despite having a strong gradient. This is because ε will have to be small enough to
compensate for strong curvature.

There are two ways we can deal with it:

1. Monitor gT g and gTHg throughout training and can probably stop when gTHg > gT g

2. Newton’s method modified for neural networks (which we describe later)

2.2 Local Minima

In the convex case, any local minimum is guaranteed to be a global minimum. For nonconvex
optimization functions (and generally for neural networks) there can be an extremely large number of
local minima.

In the neural network case in particular, this can seem like an issue because any model with multiple
equivalently parameterized latent variables have many local minima. This is largely because of the
model identifiablity problem, where a model if defined as being identifiable if after training we
can rule out all but one setting of a model’s parameters. In the neural network with m layers and n
nodes, this means that there are n!m ways of rearranging the hidden units.

Why this is not a problem, however, is that all of the local minima arising from nonidentifiability are
equivalent to each other in terms of cost function value, which is not a problem when trying to reach
convergence practically.

Local minima more generally are particularly problematic when they have high cost compared to the
global minimum. However, in neural networks, it remains an open question how local minima relate
to the global minimum. Researchers largely suspect that these local minima are not a problem, and
that most are going to be low cost anyway, which is cheaper to find than the global minimum.

2.2.1 Practical Tips

A test that can rule out local minima as the problem is to plot the norm of the gradient over time. If it
does not shrink and become insignificant than the problem is not related to local minima or critical
points.
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Figure 2: Types of critical points in one dimension.

NB. Positively testing that local minima are the problem in high dimensional space is very hard.

2.3 Plateaus, Saddle Points, and Other Flat Regions

At a saddle point, the Hessian matrix H has both positive and negative eigenvalues

To understand high dimensional issues, we consider random functions. For many classes of random
functions f : Rn −→ R local minima are common in low dimension, but much rarer in high
dimension. In other words, for many classes of random functions, the expected ratio of the number of
saddle points to the number of local minima grows expontentially with n.

Intuition. Observe that the Hessian only has positive eigenvalues at a local minimum. At a saddle
point, we have a mix of positive and negative. Consider the sign of each eigenvalue as the result of
a fair coin toss. In one dimension, it is easy to get a positive value, but in n dimensions it is much
harder to get all positive values.

An important property of many random functions is that the eigenvalues of H are more likely to be
positive as we reach regions of lower cost. This means:

1. Local minima are more likely to have low cost than higher cost
2. Saddle points are likely to have high cost
3. Local maxima are likely to have extremely high cost

Does this behavior in random functions happen in neural networks? Dauphin et al. [2014] showed
experimentally that real neural networks contain very many high cost saddle points. Compounded
with some other work, this suggests that similar behavior might happen in neural networks.

Implications. Having many saddle points will make first-order methods struggle. Second-order
methods (e.g., Newton’s Method) may work to find a point with gradient 0, but will likely find saddle
points.

Dauphin et al. [2014] describes a method for a saddle free Newton’s Method that works much better
in these situations, but it is difficult to scale.

NB. Wide flat regions with both gradient and H equal to zero exist as well, but these are a problem
for all numerical optimization algorithms.

2.4 Cliffs and Exploding Gradients

Deep models often have very steep regions resembling cliffs. These usually result from the multipli-
cation of several large weights together.
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Figure 3: Cliff structures and gradient clipping.

We can deal with these cliff structures using gradient clipping. One way to do gradient clipping is
to normal before the parameter update: if

‖g‖ > vg ← gv

‖g‖

NB. Cliffs are common in RNNs due to multiplication of many factors (1 / timestep)

2.5 Long-Term Dependencies

Consider a deep feedforward network or an RNN with a high number of timesteps.

→ The computational graph gets deep

Suppose a computational graph contains a path that consists of multiplying by a matrix Wt times

W t = (vdiag(λ)V −1)t = V diag(λ)tV −1

Any eigenvalues λi will explode if > 1 and vanish if < 1. In this way, cliffs result in exploding
gradients.

This issue of long-term dependencies is really more of a problem for RNNS since feedforward
networks use a different W for each layer. (Ch 10).

2.6 Inexact Gradients

Most optimization algorithms assume we have access to the exact gradient or to H. Often we only
have a biased estimate. Similarly, sometimes the objective function is intractable (which implies the
gradient is too). Because of this we do one of two things:

• approximate the gradient (e.g., contrastive divergence for the log-likelihood of a Boltzmann
machine)

• we can choose a surrogate loss function that is easier to approximate than the true loss.

2.7 Poor Correspondence between Local and Global Structure

FIGURE

Up to now we have considered the properties of the loss function at a single point– if Θ lies on a cliff,
if J(Θ) is poorly conditioned at Θ, if Θ is a single point, etc.

How does this impact global structure? Neural networks often do not arrive at a region of small
gradient. Similarly, sometimes critical points do not exist (e.g., negative log-likelihood asymptotically
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Figure 4: Local and Global correspondence. Local downhill moves on such a one-dimensional
cost-function will not result in a local minimum.

approaches some value). Sometimes functions like P (y|x) = N(y; f(Θ), β−1) might have negative
log-likelihood that approach −∞.

More research needs to be done in understanding the factors that affect the length of the learning
trajectory.

Regardless, all problems might be avoided if there exists a region of space connected reasonably
directly to a solution by a path that local descent can follow, and if we can initialize learning to be in
that region.

2.8 Theoretical limits to Optimization

There are several theoretical results that show that there are limits on the performance of any
optimization algorithm we might design for neural networks, but these results typically have little
bearing on the use of neural networks in practice.

For instance, some results only apply when the units output discrete values (not that common). Some
describe problem classes that are intractable, but it is difficult to tell if a problem falls into that class.

3 Basic Optimization algorithms

3.1 Stochastic Gradient Descent (SGD)

SGD and its variants are probably the most used optimization algorithms for machine learning and
deep learning. It takes an unbiased estimate of the gradient over m samples.

The crucial parameter is the learning rate ε. Often we will decay the learning rate such that εk >
ε0fork > 0. We decay because the variance of the random sampling of m examples does not vanish
over the course of training.

In practice, we use a linear decay:

εk = (1− α)ε0 + αετ
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where α = k
τ . After τ iterations we usually leave ε constant

Algorithm 1: Stochastic Gradient Descent Update
Require: Learning rate schedule ε1, ε2, ...
Require: Initial parameter Θ
k ← 1;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient estimate: ĝ ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Apply update: Θ← Θ− εkĝ;
k ← k + 1;

end

3.1.1 Strategy

Usually choose your learning rate parameters by monitoring the learning curves (objective function
values over time). This is an art more than a science.

Linear schedule strategy. For linear decay usually τ may be set to the number of iterations
required to make a few hundred passes over the training set. Usually ετ is set to 0.01 ∗ ε0. In order to
set ε0:

1. too large if there are violent oscillations in the learning curve

2. too small if the learning curve is stuck

3. monitor the first several iterations and use a learning rate that is higher than the best
performing rate at the time (but not too high)

This last idea arises from the observation that the optimal initial learning rate, in terms of training
time and final cost value, is usually higher than the learning rate that yields the best performance after
100 iterations or so

3.1.2 Convergence

The most important property of SGD is that the computation time per update does not grow with n.
SGD might converge to some fixed tolerance of its final test set error before finishing the training set.

We can measure the convergence rate by measuring the excess error

J(Θ)−min
Θ

J(Θ)

In the convex case this excess error is O( 1√
K

) after k iterations. In the strongly convex case, excess
error is O( 1

k after k iterations.

In the nonconvex case we refer to the Cramér-Rao bound, which states that generalization error
cannot decrease faster than O( 1

k (and which any faster implies overfitting).

However, this treatment of the problem ignores the constants obscured in the asymptotic analysis.
Often SGD makes rapid initial progress while evaluating the gradient using very few examples, which
is useful when trying to find a "good enough" generalization error quickly.

3.2 Momentum

Momentum accelerates learning especially when:

1. there is high curvature

2. there are small consistent gradients

3. there are noisy gradients
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Intuition. The momentum algorithm accumulates an exponentially decaying moving average of
the past gradients and continues to move in their direction.

Formally. The momentum algorithm introduces v the velocity of the gradient. We assume the
particle under inspection has unit mass. To compute momentum we take mass∗v. The parameter
update is as follows:

v ← αv − ε∇Θ(
1

m

m∑
i=1

L(f(x(i); Θ), y(i))

Θ← Θ + v

Algorithm 2: Stochastic Gradient Descent with momentum
Require: Learning rate schedule ε, momentum parameter α
Require: Initial parameter Θ, initial velocity v
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient estimate: ĝ ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Compute velocity update: v ← αv − εg;
Apply update: Θ← Θ + v;

end

The step size is going to be the largest when many successive gradients point in the same direction. In
other words, if momentum algorithm always observes g, it will accelerate towards −g until it reaches
terminal velocity where each step is ε‖g‖

1−α .

This implies that α scales the gradient like 1
1−α . For instance, when α = 0.9 this means a 10x speed

up as compared to regular SGD. As such, common values of ε are 0.5, 0.9, and 0.99.

3.2.1 Physical Intuition for Momentum

We are simulating a particle subject to continuous time Newtonian Dynamics:

• Θ(t) := position of the particle at any point in time

• f(t) := net force the particle experiences at time t = d2

dt2 Θ(t)

To remove the complexity of a second derivative we introduce v(t) := velocity of the point at time t.
This yields:

v(t) =
d

dt
Θ(t)f(t) =

d

dt
v(t)

We can solve these differential equations via Euler’s Method / numerical simulation.

What are the forces acting on the particle?

1. One is proportional to −∇ΘJ(Θ). If the particle were a hockey puck on ice, this force
would be the acceleration the puck feels when it reaches a slope on the surface.

2. The other is −v(t) viscous drag, to ensure the particle loses energy over time.

3.2.2 Nesterov Momentum

Sutskever et al. [2013] introduced a variant of momentum inspired by Nesterov’s accerlated gradient
method:

v ← αv − ε∇Θ[
1

m

m∑
i=1

L(f(x(i); Θ + αv), y(i)]Θ← Θ + v
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The gradient in this case is evaluated after the current velocity is applied. In the convex batch gradient
case, this is shown to bring convergence of excess error down from O( 1

k )→ O( 1
k2 ). It does not seem

to improve SGD generally.

Algorithm 3: Stochastic Gradient Descent with momentum
Require: Learning rate schedule ε, momentum parameter α
Require: Initial parameter Θ, initial velocity v
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Apply interim update: Θ̃← Θ + αv Compute gradient (at interim point):
ĝ ← 1

m∇Θ̃

∑
i L(f(x(i); Θ̃), y(i));

Compute velocity update: v ← αv − εg;
Apply update: Θ← Θ + v;

end

4 Parameter Intialization Strategies

Training algorithms for deep learning models are usually iterative and thus need some initialized point
to start from. This initial point can determine whether you converge at all, how fast you converge,
and generalization error.

Modern strategies for initializing parameters are simple and heuristic (it’s not a well understood
problem!).

The only property known with complete certainty is the Θ0 needs to "break symmetry" between
different units. If two hidden units with the same activation function are connected to the same inputs,
they need different Θ0. Otherwise a deterministic learning algorithm will update the units the same
way!

To break symmetry, the goal is to have each unit compute a different function (which suggests they
should all start at different places). A good strategy for doing so is to randomly initialize each unit
from a high-entropy distribution over a high-dimensional space.

4.1 General Initialization Strategies

There are number of different strategies towards initialization:

1. Set biases to heuristically chosen constants, not random (same with extra parameters)
2. Initialize all weights from a Gaussian or Uniform distribution

• The scale of the distribution has an impact on optimization
• Larger initial weights yield a stronger symmetry breaking effect

– Too big of weights might explode the gradient, or saturate the unit (causing gradient
loss). Here, saturation means to squeeze the input (i.e., ReLU = max(0,x) is
non-saturating, but σ(x) is)

3. Initialize the weights of a fully connected layer with m inputs and n outputs by sampling
from U(− 1√

m
,+ 1√

m
)

4. Glorot and Bengio [2010] introduced the method of normalized initialization:

Wij ∼ U(−
√

6

m+ n
,+

√
6

m+ n

• This assumes no nonlinearities, but empirically seems to work well on nonlinear models
5. Saxe et al. [2013] initializes to random orthogonal matrices with a gain factor g that accounts

for nonlinearity at each layer. Increasing this gain pushes the network toward the regime
where activations increase in norm as they propagate forward and gradients increase in norm
backward.

10



6. Martens [2010] introduced sparse initialization in which each unit is initialized to have k
nonzero weights.

• The idea here is to keep the total amount of input to the unit independent from the total
amount of inputs m

• This imposes a strong prior for weights drawn from large Gaussians (since it might
drop a value entirely instead of shrinking it). This can cause issues for units like maxout
units.

7. Look at the range or standard deviation of the activations or gradients on a single minibatch
of data. If weights are too small, range of activations will shrink as the activations propagate
forward.

NB. Often the optimal criteria for initial weights do not lead to optimal performance. This might
be because:

1. We may be using the wrong criteria

2. Properties impose at initialization may not hold for training

3. We might be speeding up optimization but hurting generalization.

Tips. Treat the initial scale of the weights for each layer as a hyperparameter by themselves (search
by using random search). Simiarly, treat whether you use dense or sparse initialization the same.

4.2 Initialization other parameters

4.2.1 Strategies

1. Setting biases to 0 is compatible with most weight intiialization schemes

2. If a bias is for an output unit, assume that the initial weights are small enough that the output
of the unit is determined only by the bias

3. Sometimes we choose the bias to avoid causing too much saturation at initialization.

• Setting a ReLU bias to 0.1 instead of 0
• This is not compatible with initialization schemes that do not expect strong input from

biases (e.g., random walk)

4. Sometimes set biases ≈ 1 so that other units have a chance to learn (e.g., forget gate in
LSTM)

5. Another common parameter is variance / precision

p(y|x) = N(y|wTx+ b,
1

β
)

We can usually set β = 1.

6. Initialize a supervised model with parameters learned by an unsupervised one trained on
same inputs. This encodes information about the distribution into the initial parameters.

5 Adaptive Learning Rates

There a number of different learning algorithms that relax the assumption that we need a fixed
learning rate (nor one that decays, etc). Here we describe a number of different adaptive learning rate
algorithms.

5.1 Delta-bar-delta

This is an early heuristic approach introduced by Jacobs [1988] to adapting the learning rate over
time. If the partial derivatives of the loss function with respect to some parameter remains the same
sign, we increase Θ. If the partials change sign, Θ decreases.
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5.2 AdaGrad

This approach introduced by Duchi et al. [2011] individually adapts the learning rates of all the
parameters by scaling them inversley proporitional to the square root of the sum of all historical
squared values of the gradient. This gives us greater progress in the gentle sloped directions of
parameter space, and performs well for some but not all deep learning models.

Algorithm 4: AdaGrad Algorithm
Require: Global learning rate ε
Require: Initial parameter Θ
Require: Small constant δ, perhaps 10−7, for numerical stability
Initialize gradient accumulation variable r = 0;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient: g ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Accumulate squared gradient: r ← r + g � g;
Compute update: 4Θ← − ε

δ+
√
r
� g (division and square root applied element-wise);

Apply update: Θ← Θ +4Θ;
end

5.3 RMSProp

AdaGrad is designed to converge rapidly when applied to a convex function. RMSProp, introduced
by Hinton et al. [2012], modifies AdaGrad at the gradient accumulation step into an exponentially
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weighted moving average to work better in a nonconvex setting. This weighted moving average
discards values at the extreme past, and as such is one of the goto training algorithms.

Algorithm 5: RMSProp Algorithm
Require: Global learning rate ε, decay rate ρ
Require: Initial parameter Θ
Require: Small constant δ, usually 10−6, used to stabilize division by small numbers
Initialize gradient accumulation variable r = 0;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient: g ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Accumulate squared gradient: r ← ρr + (1− ρ)g � g;
Compute parameter update: 4Θ = − ε

δ+
√
r
� g (division and square root applied element-wise);

Apply update: Θ← Θ +4Θ;
end

Algorithm 6: RMSProp Algorithm with Nesterov momentum
Require: Global learning rate ε, decay rate ρ, momentum coefficient α
Require: Initial parameter Θ, initial velocity v
Require: Small constant δ, usually 10−6, used to stabilize division by small numbers
Initialize gradient accumulation variable r = 0;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute interim update: Θ̃← Θ + αv;
Compute gradient: g ← 1

m∇Θ̃

∑
i L(f(x(i); Θ̃), y(i));

Accumulate gradient: r ← ρr + (1− ρ)g � g;
Compute velocity update: v ← αv − ε√

r
� g ( 1√

r
applied element-wise;

Apply update: Θ← Θ + v;
end

5.4 Adam

Named for "Adaptive Moments", Adam can be considered a variant of RMSProp with momentum.
Introduced by Kingma and Ba [2014], one of the major differences is that Adam incorporates
momentum directly as an estimate of the first order moment (rather than applying momentum to the
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rescaled gradients). Adam also has a bias correction not really found in regular SGD + Momentum.
Given this, Adam is generally regarded as robust to hyperparameters.

Algorithm 7: Adam algorithm
Require: Step size ε (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1] (Suggested defaults: 0.9

and 0.999 respectively)
Require: Small constant δ, usually 10−8, for numerical stabilization
Require: Initial parameters Θ
Initialize 1st and 2nd moment variables s = 0, r = 0;
Initialize time step t = 0;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient: g ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

t← t+ 1;
Update biased first moment estimate: s← ρ1s+ (1− ρ1)g;
Update biased second moment estimate: r ← ρ2r + (1− ρ2)g � g;
Correct bias in first moment: ŝ← s

1−ρt1
;

Correct bias in second moment: r̂ ← r
1−ρt2

;
Compute update: 4Θ = −ε s√

r̂+δ
(operations applied element-wise);

Apply update: Θ← Θ +4Θ;
end

5.5 AdaDelta

AdaDelta (introduced by Zeiler [2012]) is an extension of AdaGrad that seeks to reduce its aggressive,
monotonically decreasing learning rate. Like RMSprop, it does not keep the entire history, but some
fixed size window w.

It keeps a running average of the accumulated past gradients E[g2]t that depends only on the previous
average and the current gradient:

E[g2]t = γ E[g2]t−1 + (1− γ)g2
t

We treat γ similar to a momentum term, and can set it around 0.9. To ensure the update has the same
hypothetical units as the parameters, AdaDelta keeps track of another running average of the squared
parameter updates E[4Θ]t.

Algorithm 8: AdaDelta
Require: Constant ε, Decay rate ρ
Require: Initial parameters Θ
Initialize accumulation variables E[g2]0 = 0,E[4Θ2]0 = 0;
Initialize time step t = 1;
while stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with corresponding targets
y(i);

Compute gradient: g ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Accumulate gradient: E[g2]t = ρE[g2]t−1 + (1− ρ)g2
t ;

Compute update: 4Θt = −
√

E[4Θ2]t−1+ε√
E[g2]t+ε

gt;

Accumulate Updates: E[4Θ2]t = ρE[4Θ2]t−1 + (1− ρ)4Θ2
t ;

Apply Update: Θt+1 = Θt +4Θt;
t← t+ 1;

end
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5.6 Choosing the Right Optimization Algorithm

There is no clear consensus what the right optimization algorithm is. Schaul et al. [2013] presents
a comparison of algorithms across a number of different tasks. That being said, the most popular
algorithms are:

• SGD
• SGD with momentum
• RMSProp
• RMSProp with momentum
• AdaDelta
• Adam

6 Approximate Second-order Methods

Recall: we are primarily considering empirical risk:

J(Θ) = E
(x,y)∼p̂data

[L(f(x; Θ), y)] =
1

m

m∑
i=1

L(f(x(i); Θ), y(i))

Here we consider second-order methods, or those methods that make use of the second derivatives of
the objective function to improve optimization. The most prominent methods are Newton’s method,
those involving conjugate gradients, and BFGS.

6.1 Newton’s Method

This method is based on a second-order Taylor series expansion to approximate J(Θ) near some Θ0:

J(Θ) ≈ J(Θ0) + (Θ−Θ0)T∇ΘJ(Θ0) +
1

2
(Θ−Θ0)TH(Θ−Θ0)

When we solve for the critical point we get:
Θ∗ = Θ0 −H−1∇ΘJ(Θ0)

Locally quadratic functions (and those with positive definite H) will jump straight to the minimum. If
the function is convex but not quadratic we can iterate using this method (as long as H is positive
definite)

Intuition. In deep learning we usually have a nonconvex objective function surface, e.g., one with
lots of saddle points. If eigenvalues of H are not all positive (for instance, near a saddlepoint), then
we can update in the wrong direction.

Algorithm 9: Newton’s method with objective J(Θ) = 1
m

∑m
i=1 L(f(x(i); Θ), y(i)

Require: Initial parameter Θ0

Require: Training set of m examples
while stopping criterion not met do

Compute gradient: g ← 1
m∇Θ

∑
i L(f(x(i); Θ), y(i));

Compute Hessian: H ← 1
m∇

2
Θ

∑
i L(f(x(i); ,Θ), y(i));

Compute Hessian inverse: H−1;
Compute update: 4Θ = −H−1g;
Apply update: Θ = Θ +4Θ;

end

Something we can do to address this is to regularize the Hessian:
Θ∗ = Θ0 − [H(f(Θ)) + αI]−1∇Θf(Θ0)

This regularization allows us to use Newton’s method on nonconvex functions, as long as any negative
eigenvalues of H are close to 0.
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Practical concerns. Newton’s method is computationally complex (holding H is O(|Θ|2) in size
and inverting it is O(|Θ|3). Variants of this allow us to sidestep this burden by avoiding computing H.

6.2 Conjugate gradients

We can avoid calculating H−1 by iteratively descending conjugate directions. We seek to find a
search direction that is conjugate to the previous line search direction, that is to say, it will not undo
progress made in that direction.

A search direction in the conjugate gradient methods is dt = ∇ΘJ(Θ) + βtdt−1. dt and dt−1 are
conjugate if dTt Hdt−1 = 0

How do we compute βt without computing H?

1. Fletcher-Reeves

βt =
∇ΘJ(Θt)

T∇ΘJ(Θt)

∇ΘJ(Θt−1)T∇ΘJ(Θt−1)

2. Polak-Ribière

βt =
(∇ΘJ(Θt)−∇ThetaJ(Θt−1))T∇ΘJ(Θt)

∇ΘJ(Θt−1)T∇ΘJ(Θt−1)

Algorithm 10: Conjugate gradient method
Require: Initial parameters Θ0

Require: Training set of m examples
Initialize ρ0 = 0;
Initialize g0 = 0;
Initialize t = 1;
while stopping criterion not met do

Initialize the gradient gt = 0;
Compute gradient: gt ← 1

m∇Θ

∑
i L(f(x(i); Θ), y(i));

Compute βt = (gt−gt−1)T gt
gTt−1gt−1

(Polak-Ribière);
(Nonlinear conjugate gradient: optionally reset βt to zero, for example if t is a multiple of some

constant k, such as k = 5);
Compute search direction: ρt = −gt + βtρt−1;
Perform line search to find: ε∗ = arg minε

1
m

∑m
i=1 L(f(x(i); Θt + ερt), y

(i));
(On a truly quadratic cost function, analytically solve for ε∗ rather than explicitly searching for

it);
Apply update: Θt+1 = Θt + ε∗ρt;
t← t+ 1;

end

Using an approach like this, on a quadratic surface we ensure that we do not increase the gradient
along the previous direction. This means that we stay at the minimum along previous directions, and
that in a k-dimensional parameter space we require at most k line searches.

6.2.1 Nonlinear conjugate gradients

The method is largely applicable to complicated objective functions. With no assurance that the
objective function is quadratic however, the conjugate directions are no longer assured to remain at
the minimum. To account for this, we reset the method occasionally with a line search along the
unaltered gradient.

Practical tips. It is often beneficial to to initialize the optimization with a few iterations of SGD.

Minibatch versions of such a method exist, as proposed by Le et al. [2011]. Scaled conjugate
gradients, proposed specifically for neural networks have also been proposed Møller [1993].
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6.3 BFGS Algorithm

The Broyden-Fletcher-Goldfarb-Shanno Algorithm takes a more direct approach to the approximation
of the Newton’s Method update than conjugate gradient.

Recall in Newton’s method that Θ∗ = Θ0−H−1∇ΘJ(Θ0). In the BFGS algorithm, we approximate
the inverse of a matrix Mt that is iteratively refined by low rank updates to ≈ H−1.

This defines a direction of descent ρt = Mtgt. We then perform a line search to find ε∗ s.t.
Θt+1 = Θt + ε∗ρt

BFGS spends less time refining each line search than Newton’s method but has to store the matrix M,
which is O(n2)

6.3.1 Limited Memory (L-BFGS)

We can avoid storing M by assuming Mt−1 is the identity matrix. If used with exact line searches,
directions defined by L-BFGS are mutually conjugate. Two benefits of this approach are that it
remains well behaved even when the minimum of each line search is approximate, and the memoryless
version can be expanded to store some vectors used to update M at each timestep (which is O(n).
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