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Abstract

Pre-trained language representation models, such as BERT, capture a general lan-
guage representation from large-scale corpora. Recent advances include augment-
ing language models (LM) with structured knowledge to make better predictions
in knowledge driven or domain-specific tasks. This lecture will briefly introduce
most recent papers on this aspect.

1 Introduction

Since the year of 2017, pre-trained LMs have made some of the most exciting breakthroughs in
the field of Nartual Language Processing (NLP) and numerous new models are designed to tackle
different tasks. As Figure 1 shows, starting from ELMo Peters et al. [2018] and BERT Devlin et al.
[2018], people have tried incorporating cross-lingual training, multi-tasking, knowledge graphs,
images and videos into LMs. This lecture mainly focuses on recent models combining LMs with
structured knowledge.

2 Knowledge Enhanced Language Representations

2.1 Motivation

Self-supervised learning of LMs often neglect structured knowledge information, making knowledge-
driven tasks like entity typing and relation extraction hard. Knowledge graphs (KGs) are argued
to be able to provide rich structured knowledge facts for better language understanding. There
are two main challenges according to Zhang et al. [2019]. (1) Structured Knowledge Encoding:
regarding to the given text, how to effectively extract and encode its related informative facts in
KGs for language representation models is an important problem; (2) Heterogeneous Information
Fusion: the pre-training procedure for language representation is quite different from the knowledge
representation procedure, leading to two individual vector spaces.

There has been work that tries to integrate language modeling with knowledge graphs. Specifically,
we are going to focus on two ERNIEs proposed by THU Zhang et al. [2019] and Baidu Sun et al.
[2019], and K-BERT Liu et al. [2019].

2.2 Models

2.2.1 THU-ERNIE

Overview They propose Enhanced Language RepresentatioN with Informative Entities (ERNIE),
which pre-trains a language representation model on both large-scale textual corpora and KGs: (1)
For extracting and encoding knowledge information, they first recognize named entity mentions in
text and then align these mentions to their corresponding entities in KGs. Instead of directly using
the graph-based facts in KGs, they encode the graph structure of KGs with knowledge embedding
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Figure 1: A diagram designed by students from Tsinghua University with a github repo of curated
paper list on LMs: https://github.com/thunlp/PLMpapers

algorithms like TransE Bordes et al. [2013], and then take the informative entity embeddings as input
for ERNIE. Based on the alignments between text and KGs, ERNIE integrates entity representations
in the knowledge module into the underlying layers of the semantic module.

(2) Similar to BERT, they adopt the masked language model and the next sentence prediction as the
pre-training objectives. Besides, for the better fusion of textual and knowledge features, they design a
new pre-training objective by randomly masking some of the named entity alignments in the input
text and asking the model to select appropriate entities from KGs to complete the alignments. Unlike
the existing pre-trained language representation models only utilizing local context to predict tokens,
their objectives require models to aggregate both context and knowledge facts for predicting both
tokens and entities, and lead to a knowledgeable language representation model.

Architecture The whole model architecture of ERNIE consists of two stacked modules as seen
in Figure 2: (1) the underlying textual encoder (T-Encoder) responsible to capture basic lexical and
syntactic information from the input tokens, and (2) the upper knowledgeable encoder (K-Encoder)
responsible to integrate extra token-oriented knowledge information into textual information from the
underlying layer, so that they can represent heterogeneous information of tokens and entities into
a united feature space. The T-Encoder is simply a multi-layer bidirectional Transformer encoder
identical to BERT.

Knowledgeable Encoder The knowledgeable encoder K-Encoder consists of stacked aggregators,
which are designed for encoding both tokens and entities as well as fusing their heterogeneous features.
In the i-th aggregator, the input token embeddings
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Then, the i-th aggregator adopts an information fusion layer for the mutual integration of the token
and entity sequence, and computes the output embedding for each token and entity. For a token wj
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Figure 2: The left part is the architecture of ERNIE. The right part is the aggregator for the mutual
integration of the input of tokens and entities.

and its aligned entity ek = f(wj), the information fusion process is as follows,
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where hj is the inner hidden state integrating the information of both the token and the entity. σ(·)
is the non-linear activation function, which usually is the GELU function Hendrycks and Gimpel
[2016]. For the tokens without corresponding entities, the information fusion layer computes the
output embeddings without integration.

The output embeddings of both tokens and entities computed by the top aggregator will be used as
the final output embeddings of the knowledgeable encoder.

New Pre-training Objective In order to inject knowledge into language representation by infor-
mative entities, they propose a new pre-training task for ERNIE, which randomly masks some
token-entity alignments and then requires the system to predict all corresponding entities based on
aligned tokens. Given the token sequence w1, ..., wn and its corresponding entity sequence e1, ..., em,
they define the aligned entity distribution for the token wi as follows,

p(ej |wi) =
exp(linear(wo

i ) · ej)∑k=1
m exp(linear(wo

i ) · ek)
,

which will be used to compute the cross-entropy loss function.

Considering that there are some errors in token-entity alignments, they perform the following
operations: (1) In 5% of the time, for a given token-entity alignment, they replace the entity with
another random entity, which aims to train the model to correct the errors that the token is aligned
with a wrong entity; (2) In 15% of the time, they mask token-entity alignments, which aims to
train their model to correct the errors that the entity alignment system does not extract all existing
alignments; (3) In the rest of the time, they keep token-entity alignments unchanged, which aims to
encourage the model to integrate the entity information into token representations for better language
understanding.

Side note: a new paper about a model KnowBert from authors of ELMo is accepted at EMNLP this
year and adopts a similar idea of integrating Knowledge Bases (KBs) to LMs Peters et al. [2019].
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Figure 3: Different masking level of a sentence

2.2.2 Baidu-ERNIE

Overview In addition to basic masking strategy, they use two kinds of knowledge strategies: phrase-
level strategy and entity-level strategy. They take a phrase or a entity as one unit, which is usually
composed of several words. All of the words in the same unit are masked during word representation
training, instead of only one word or character being masked. In this way, the prior knowledge
of phrases and entities are implicitly learned during the training procedure. Instead of adding the
knowledge embedding directly, ERNIE implicitly learned the information about knowledge and
longer semantic dependency, such as the relationship between entities, the property of a entity
and the type of a event, to guide word embedding learning. This can make the model have better
generalization and adaptability.

In order to reduce the training cost of the model, ERNIE is pre-trained on heterogeneous Chinese
data, and then applied to 5 Chinese NLP tasks. ERNIE advances the state-of-the-art results on all
of these tasks. An additional experiment on the cloze test shows that ERNIE has better knowledge
inference capacity over other strong baseline methods.

Knowledge Integration Masking Instead of adding the knowledge embedding directly, they
proposed a multi-stage knowledge masking strategy to integrate phrase and entity level knowledge
into the language representation. The different masking level of a sentence is described in Figure 3.

The first stage is the same as BERT. The second stage is to employ phrase-level masking. Phrase is a
small group of words or characters together acting as a conceptual unit. For English, they use lexical
analysis and chunking tools to get the boundary of phrases in the sentences, and use some language
dependent segmentation tools to get the word/phrase information in other language such as Chinese.
In phrase-level mask stage, they also use basic language units as training input, unlike random basic
units mask, this time they randomly select a few phrases in the sentence, mask and predict all the
basic units in the same phrase. At this stage, phrase information is encoded into the word embedding.

The third stage is entity-level masking. Name entities contain persons, locations, organizations,
products, etc., which can be denoted with a proper name. It can be abstract or have a physical
existence. Usually entities contain important information in the sentences. As in the phrase masking
stage, they first analyze the named entities in a sentence, and then mask and predict all slots in the
entities. After three stages, word representation enhanced by richer semantic information is obtained.

2.2.3 K-BERT

Overview They propose a knowledge-enabled language representation model (K-BERT) with
knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge.
However, too much knowledge incorporation may divert the sentence from its correct meaning, which
is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible
matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the
models by equipped with a KG without pre-training by-self because it is capable of loading model
parameters from the pretrained BERT.

Architecture As shown in Figure 4, the model architecture of K-BERT consists of four modules,
i.e., knowledge layer, embedding layer, seeing layer and mask-transformer. For an input sentence, the
knowledge layer first injects relevant triples into it from a KG, transforming the original sentence
into a knowledge-rich sentence tree. The sentence tree is then simultaneously fed into the embedding
layer and the seeing layer and then converted to a token-level embedding representation and a visible
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Figure 4: The model structure of K-BERT: Compared to other RL models, the K-BERT is equipped
with an editable KG, which can be adapted to its application domain.

matrix. The visible matrix is used to control the visible area of each token, preventing changing the
meaning of the original sentence due to too much knowledge injected.

Knowledge Layer The knowledge layer (KL) is used for sentence knowledge injection and sen-
tence tree conversion. Specifically, given an input sentence s = {w0, w1, ..., wn} and a KG K,
KL outputs a sentence tree t = {w0, w1, ..., wi {(ri0, wi0), ..., (rik, wik)} , ..., wn}. In this work, a
sentence tree can have multiple branches, but its depth is fixed to 1, which means that the entity
names in triples will not derive branches iteratively.

Soft-position Embedding Taking the sentence tree in Figure 5 as an example, after rearranging,
[CEO] and [Apple] are inserted between [Cook] and [is], but the subject of [is] should be [Cook]
instead of [Apple]. To solve this problem, they set the position number of [is] to 3 instead of 5. So
when calculating the self-attention score in the transformer encoder, [is] is at the next position of
[Cook] by the equivalent. However, another problem arises: the position numbers of [is] and [CEO]
are both 3, which makes them close in position when calculating self-attention, but in fact, there is
no connection between them. The solution to this problem is Mask-Self-Attention, which will be
covered in the next subsection.

Seeing Layer The input to K-BERT is a sentence tree, where the branch is the knowledge gained
from KG. However, the risk raised with knowledge is that it can lead to changes in the meaning of the
original sentence, i.e., KN issue. For example, in the sentence tree in Figure 2, [China] only modifies
[Beijing] and has nothing to do with [Apple]. Therefore, the representation of [Apple] should not
be affected by [China]. On the other hand, the [CLS] tag used for classification should not bypass
the [Cook] to get the information of [Apple], as this would bring the risk of semantic changes. To
prevent this from happening, K-BERT’s use a visible matrix M to limit the visible area of each token
so that [Apple] and [China], [CLS] and [Apple] are not visible to each other. The visible matrix M is
defined as,

Mij =

{
0 wi 	 wj

−∞ wi � wj

where wi 	 wj indicates that wi and wj are in the same branch, while wi � wj are not. i and j are
the hard-position index.

Mask-Self-Attention The Transformer Vaswani et al. [2017] encoder in BERT cannot receive the
visible matrix M as an input, so they need to modify it to Mask-Transformer, which can limit the
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Figure 5: The process of converting a sentence tree into an embedding representation and a visible
matrix. In the visible matrix, red means visible, and white means invisible. For example, the cell at
row 4, column 9 is white means that the ”Apple(4)” cannot see ”China(9)”.

self-attention region according to M . Mask-Transformer is a stack of multiple mask-self-attention
blocks. Formally, the mask-self-attention is,

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv,

Si+1 = softmax(
Qi+1Ki+1> +M√

dk
),

hi+1 = Si+1V i+1,

where Wq, Wk and Wv are trainable model parameters. hi is the hidden state of the i-th mask-self-
attention blocks. dk is the scaling factor. M is the visible matrix calculated by the seeing layer.
Intuitively, if wk is invisible to wj , the Mjk will mask the attention score Si+1

jk to 0, which means
wk make no contribution to the hidden state of wj .
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