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ABSTRACT

Domain adaptation is an essential problem in transfer learning, focusing on how to exploit labeled
data in familiar domains/tasks for a new target one of interest where supervision is limited. Recent
advances in deep learning research have shown that neural networks are highly transferable across
domains and tasks, with specific techniques and training strategies. In this gentle introduction, we first
formally introduce domain adaptation in the broader context of transfer learning, revisit a few classic
methods in conventional machine learning, and finally introduce some state-of-the-art works on neural
domain adaptation (most are based on adversarial training). We conclude this paper with a discussion
on current research in natural language processing (NLP) applications and future directions.

Keywords Transfer Learning · Domain Adaptation · Natural Language Processing · Deep Neural Networks

“Domain adaptation establishes knowledge transfer from the labeled source domain to the
unlabeled target domain by exploring domain-invariant structures that bridge different
domains of substantial distribution discrepancy.” (by Pan and Yang in their famous 2010 survey.)

1 Transfer Learning and Domain Adaptation

Transfer learning, originating from cognitive science, is now a broad area in artificial intelligence including a lot
of research topics about learning to share knowledge between multiple tasks or domains. We focus on Domain
Adaptation1, a significant sub-area in transfer learning. Domain adaptation aims to exploit data from data-sufficient
domains (source domains) for learning better models in other domains (target domains) that have no/limited labels.

1.1 Problem formation

We now mathematically formulate general domain adaptation problems using the notation shown in Table 1. Given
one source domain DS and a corresponding task TS , as well as a target domain DT and the task TT . Transfer learning,
or domain adaptation in particular, is the process of enhance the performance of the target predictive function fT (·)
using the knowledge from DS with TS . We usually believe DS 6= DT and TS = TT in domain adaptation, although the
definition of a task and a domain can be ambiguous in practice2.

The assumption thatDS 6= DT is called domain shift (a.k.a domain discrepancy), which is usually due to the difference
between input feature spaces (XS 6= XT ) or the difference between joint distributions (PS(X,Y ) 6= PT (X,Y ) within
the same spaces. Another special case is when the output spaces are also changed YS 6= YT . For the first and third case,
we name it as heterogeneous domain adaptation and the second case as homogeneous domain adaptation.

1Some people use the term “transductive transfer learning”. Imagine if we see source data as training data and target data as
the test, then we are are aware of all test inputs before doing inference, which is thus an indeed transductive learning problem.

2A good example here is “to ride a bike” versus “to ride a motorcyle”. We can say “to ride” is a task, and “bike” and “motorcyle”
are two different domains, while we can also simply think they are two different tasks.



Notation Description Notation Description
X Input feature space P (X) Marginal distribution
Y Label space P (Y |X) Conditional distribution
T Predictive learning task P (Y ) Label distribution
Subscript S Denotes source DS Source domain
Subscript T Denotes target DT Target domain

Table 1: Summary of commonly used notation

1.2 Example Cases in Natural Language Processing

The above domain adaptation settings are all common in NLP applications. Say you would like to build a binary
sentiment classifier (positive/negative) for laptop reviews in English, but you only have the labeled data in movie
reviews (also in English) with the same label space ( positive/negative). This is a typical setting of homogeneous domain
adaptation (XS = XT ,YS = YT , but PS(X,Y ) 6= PT (X,Y )).

If someone wants to build a sentiment classifier for movies but on French reviews, this may be a heterogeneous
domain adaptation (i.e. cross-lingual transfer) if they use English word embeddings and French word embeddings
respectively (XS 6= XT ). A promising direction in cross-lingual transfer is to first transforming multiple mono-lingual
word embedding space into a common shared representation (i.e. multi-lingual word embeddings and multilingual
BERT-like models), thus making XS ' XT .

A more difficult scenario is when label space is different (YS 6= YT ). For example, in cross-domain named entity
recognition [7], one wants to build a model for extracting entities in medical domains with the types of {Drug, Disease,
Symptoms}, while the source domain data only contains entity types like {Person, Location, Organization}. In
such settings, external priors or a adequate number of labeled examples in target domains may be necessary.

1.3 Other related research topics

Some recent works see multi-task learning (MTL) as an important special case of inductive transfer learning as well.
In other words, given M domains3 {Di = (Xi, Ti,Yi)}M , multi-task learning aims to improve the performance of the
predictor of each task fi(·) by using the information from all the remaining domains. Note that there is no preference
on a particular task, and we also assume the labels in each domain/task is sufficient.

For example in NLP, we may need to build a multi-task learning model for named-entity recognition, relation extraction
and cor-reference resolution at the same time, because they are inherently dependent and using more out-of-domain
data can be beneficial for each one of them.

Few-shot learning is a special case of transfer learning where labels in target tasks/domains are very few. Therefore, we
need to specifically design learning algorithms such that model adaptation can be done rapidly. Adversarial learning
and network robustness are also highly related, because we can see target domain examples as potential attacks aiming
for lead source models to make mistakes.

In this gentle introduction, we mainly focus on homogeneous domain adaptation4, but the techniques can be also
applied in other problem settings.

2 Analysis of Domain Adaptation with Joint Distribution

We would like to more carefully analyze the most popular case in domain adaptation, Homogeneous DA, and answer
this key question: how is it possible that someone can use the source domain labeled data (XS = {xS1 , xS2 , . . . }, YS =
{yS1 , yS2 , . . . }) for learning a target model fT , while you have XT = {xT1 , xT2 , . . . } but no YT or |YT | � |XT |?
Recall that the optimal function f∗T for the target domain should minimize the expected loss with respect to the joint
distribution in the target domain PT (X,Y ) :

f∗T = argmin
f∈H

∑

(x,y)∈X×Y
PT (x, y) L(x, y, f)

3We here intentionally misuse the term domain connect our previous formulation.
4From this line on, we use domain adaptation to refer homogeneous domain adaptation if without specification.
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Note that xSi and xTj are both in the same shared input feature space X , while similarly ySi and yTj are both in Y . H
denotes the hypothesis function space where we assume the optimal predictor should locate in. L is the loss function to
measure the risk of using an arbitrary predictor f works on input x with underlying truth to be y.

In a typical supervised learning scenario, we should use P̃T (X,Y ) to approximate PT (X,Y ), such that we can have an
empirical distribution based on {(xT1 , yT1 ), (xT2 , yT2 ), . . . } (drawn i.i.d from PT (X,Y )). However, it is impossible in
domain adaptation problems since most of the yTi are missing.

We instead ask help from the source domain labeled data {(xS1 , yS1 ), (xS2 , yS2 ), . . . } (drawn i.i.d from PS(X,Y )):

f∗T = argmin
f∈H

∑

(x,y)∈X×Y

PT (x, y)

PS(x, y)
PS(x, y)L(x, y, f)

≈ argmin
f∈H

∑

(x,y)∈X×Y

PT (x, y)

PS(x, y)
P̃S(x, y)L(x, y, f)

= argmin
f∈H

1

|XS |

|XS |∑

i=1

PT
(
xSi , y

S
i

)

PS
(
xSi , y

S
i

)L
(
xSi , y

S
i , f

)

It is very clear here now from the above equations, the (homogeneous) domain adaptation can be seen as a learning

process on the source domain labeled data while the loss of each source sample (xSi , y
S
i ) is weighted by

PT (xS
i ,y

S
i )

PS(xS
i ,y

S
i )

.

Intuitively, this weighting function PT (x,y)
PS(x,y) describes how different it is between the two domains in the same position

(x, y). Therefore, if we can find the set of optimal weights of source domain data points, the adaptation problem can be
seen as solved. However, estimating joint probability PS(x, y) is a challenging task, not to mention PT (x, y) is even
harder to obtain for we only have limited labels.

In order to simplify the analysis and have a closer look at the challenge of the Homogeneous DA problem, we can
decompose P (X,Y ) to P (X)P (Y |X), and then we get two ratios which are named instance difference and labeling
difference separately (Jiang, 2008):

• Instance Difference5: The first probability ratio component is PT (x)
PS(x) . Intuitively, an instance that is in a dense

region in the source domain but in a sparse region in the target domain should be down-weighted, because this
instance is not so representative of the target domain. This case corresponds to PT (x)

PS(x) < 1, vice versa. Since Y
is not involved in this probability ratio, ideally we can estimate this ratio using only unlabeled instances, that
is, we can estimate this ratio in unsupervised domain adaptation.

• Labeling Difference6: The second probability ratio component is PT (y|x)
PS(y|x) , which indicates that the distribution

of labels are how different in the two domains at x. Since this ratio is related to Y , without any labeled
instances from the target domain, it is hard to estimate PT (y|x) and thus hard to estimate this ratio. Therefore,
we can only estimate this ratio with relatively high accuracy in supervised domain adaptation.

This analysis naturally results in an instance-weighting based approach [6] for homogeneous domain adaptation:

f∗T ≈ argmin
f∈H

|XS |∑

i=1

PT
(
xSi
)

PS
(
xSi
) PT

(
ySi |xSi

)

PS
(
ySi |xSi

)L
(
xSi , y

S
i , f

)

Note that instance weighting is only one view of formulate the domain adaptation problem. Another important view is
that how we can create a new isomorphic feature space such that the two domains can share closer distributions. The
key challenge is how to match different domain distributions effectively.

5For example, even with the same word vocabulary, the words in different domians like laptop review and movie review copora
can be very different.

6For example, the same words can cause different labels in source and target domains. The sentence “it is pretty long.” can mean
negative in a movie review, while being positive in a review about something else. xD
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3 Maximum Mean Discrepancy: A key technique for measuring domain shift

We mention the difference between source and target data distributions a lot. How are we going to formally compute
the distance between the two distributions given their samples? This problemis called Two-Sample Tests7.

Imagine that you are given two groups of data points (drawn form p and q respectively) in a shared space X , and you
want to measure the difference between the probability distributions of them, what you will do? A straightforward way
is to compute the mean-value point of each group and then use the distance between the two centrals as the distance
between the two distributions. It is indeed a good intuition while X may not be a good place to do so. Imagine two
Gaussians with the same mean but different variance, as shown in Figure 1.

Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form x x 2
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Figure 1: Intuition of MMD: using higher-dimensional feature spaces such that mean values are good distance indicators.

3.1 Definition

The Maximum Mean Discrepancy (MMD) is a measure of the difference between two probability distributions from
their samples using such intuition. It is an effective criterion that compares distributions without initially estimating
their density functions8.

MMD(p, q) := sup
f∈F

(Ep[f(x)]−Eq[f(y)])

where F is a class of functions f : X → R. Simply put, we are using many random mappings that transform a data
point x ∈ X to a real number f(x) ∈ R, and then compute the mean-value (expectations) of the two groups of points
Ep[f(x)] and Eq[f(y)] from the two distributions. Then, each function f ∈ F can give a distance values between the
two distributions. Finally, we take the supremum of the set of such a infinite set of distance values as the final distance
between p and q. That is why we call this distance as maximum mean discrepancy. With the sample data points (X , Y )
in two distributions, we can get the empirical estimate of the MMD as:

MMD(F , X, Y ) := sup
f∈F


 1

m

m∑

i=1

f (xi)−
1

n

n∑

j=1

f (yj)


 ,

where m = |X| and n = |Y |.

3.2 MMD Computation in Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space (RKHS)9 allows us to represent a function as a vector. We can then use inner-product
in a universal RKHS H to understand the mapping f(x) = 〈f, φ(x)〉H, where φ : X → H (i.e. feature space map).
Furthermore, we have Ep[f(x)] can be represented as 〈f,Ep[φ(x)]〉H. We call Ep[φ(x)] as kernel embedding of
distributions10 or kernel mean.

7http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_distribEmbed_1.pdf
8Many other well-known metrics such as Kullback-Leibler divergence need to first estimate the density of the two distributions

from the samples before measuring their distance, which can be time-consuming and also have bias (nonzero when p = q).
9http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

10https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions

4

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_distribEmbed_1.pdf
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf
https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions


Therefore, we can conclude that:
MMD(p, q) = sup

‖f‖H≤1

Ep[f(x)]−Eq[f(y)] = sup
‖f‖H≤1

Ep [〈f, φ(x)〉H]−Eq [〈f, φ(y)〉H]

= sup
‖f‖H≤1

〈µp − µq, f〉H = ‖µp − µq‖H
,

where µp = Ep[φ(x)] and µq = Eq[φ(y)]. We take the square of MMD for symmetric property of the distance:

MMD2(p, q) := 〈µp − µq, µp − µq〉H = 〈µp, µp〉H + 〈µq, µq〉H − 2 〈µp, µq〉H
=Ep 〈φ(x), φ (x′)〉H +Eq 〈φ(y), φ (y′)〉H − 2Ep,q〈φ(x), φ(y)〉H

Using a Gaussian kernel function k (x, x′) = exp
(
−‖x− x′‖2 /

(
2σ2
))

and the samples, we finally have:

MMD2(X,Y ) =
1

m(m− 1)

m∑

i6=j
k (xi, xj)+

1

n(n− 1)

n∑

i 6=j
k (yi, yj)−

2

mn

m,n∑

i,j=1

k (xi, yj).

Note that this computation incurs a complexity of O(n2), assuming m and n are similar.

3.3 MMD for Domain Adaptation

Now, with our old notations, we can compute the distance between the marginal distributions of the source and target
domain as:

MMD2(XS , XT ) =
1

m(m− 1)

m∑

i6=j
k
(
xSi , x

S
j

)
+

1

n(n− 1)

n∑

i 6=j
k
(
xTi , x

T
j

)
− 2

mn

m,n∑

i,j=1

k
(
xSi , x

T
j

)

, where m = |XS | and n = |XT |. In conventional domain adaptation and transfer learning, MMD has been used to
reduce the distribution mismatch between the source and target domain. Pan et al. (2009) proposed a PCA-based model
referred to as Transfer Component Analysis (TCA) that used MMD to induce a subspace where the data distributions in
different domains are closed to each other. Long et al. (2013) presented a Transfer Sparse Coding (TSC) that utilizes
MMD in the encoding stage to match the distributions of the sparse codes.

4 Domain Adaptation for Deep Neural Networks

In 2004, an important paper named “How transferable are features in deep neural networks?”11 [16]
was published at NIPS, which analyzed the transferability of features from each layer of a deep neural network such
as AlexNet. They found that the generality or specificity of each layer can be very different: lower layer features are
generally more transferable than higher layer features, which for the first time validates that deep neural networks are
promising for domain adaptation and transfer learning.

However, it was still an open question that how we can regularize deep neural networks training such that the learned
neural representations can be more transferable between domains and tasks. A typical kind of research (DaNN, DDC, DAN)
is based on using MMD as the regularization terms added to loss functions, such that the network training process on
source domain labeled data also aims to minimize the difference between source domain inputs and target domain inputs.
Another recent popular direction ((DANN) is based on adversarial learning, which creates a new task to indirectly
regularize the primary networks towards a domain-invariant space.

4.1 DaNN: Domain adaptive neural networks for object recognition
(Ghifary et al., in Proc. of PRICAI 2014, w/ 70+ citations)

This is the very first work using MMD to regualize a neural network, and it is very simple. They use a two-layer
feed-forward neural network, where the first layer is a feature extractor and the second is used as a classifier. In addition
to the original classification loss LNNs, they use MMD between the first-layer outputs (i.e. activations) of source/target
domain inputs (HS v.s. HT ). The key intuition here is to use the first-layer outputs as the new feature space and then
minimize the distance between source and target inputs in this feature space.

LDaNN = LNNs(XS , YS) + γMMD2 (HS , HT )

11Now it has 3,000+ citations as of Oct. 2019. There is a follow-up paper named “How Transferable are Neural Networks
in NLP Applications?” [11], which conducts extensive transfer learning experiments for NLP models.
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By using such a regularization, they aim to train the network parameters such that the supervised criterion is optimized
and the hidden layer representations are encouraged to be invariant across different domains. The paper also illustrate
how to compute the gradients and update the neural network with the MMD regularization. However, it was not very
powerful since one layer is too shallow.

4.2 DDC: Deep domain confusion: Maximizing for domain invariance
(Tzeng et al., in Arxiv 2014, w/ 490+ citations)

Deep Domain Confusion: Maximizing for Domain Invariance

Eric Tzeng, Judy Hoffman, Ning Zhang
UC Berkeley, EECS & ICSI

{etzeng,jhoffman,nzhang}@eecs.berkeley.edu

Kate Saenko
UMass Lowell, CS
saenko@cs.uml.edu

Trevor Darrell
UC Berkeley, EECS & ICSI

trevor@eecs.berkeley.edu

Abstract

Recent reports suggest that a generic supervised deep
CNN model trained on a large-scale dataset reduces, but
does not remove, dataset bias on a standard benchmark.
Fine-tuning deep models in a new domain can require a
significant amount of data, which for many applications is
simply not available. We propose a new CNN architecture
which introduces an adaptation layer and an additional do-
main confusion loss, to learn a representation that is both
semantically meaningful and domain invariant. We addi-
tionally show that a domain confusion metric can be used
for model selection to determine the dimension of an adap-
tation layer and the best position for the layer in the CNN
architecture. Our proposed adaptation method offers em-
pirical performance which exceeds previously published re-
sults on a standard benchmark visual domain adaptation
task.

1. Introduction
Dataset bias is a well known problem with traditional

supervised approaches to image recognition [32]. A num-
ber of recent theoretical and empirical results have shown
that supervised methods’ test error increases in proportion
to the difference between the test and training input distri-
bution [3, 5, 29, 32]. In the last few years several methods
for visual domain adaptation have been suggested to over-
come this issue [10, 33, 2, 29, 25, 22, 17, 16, 19, 20], but
were limited to shallow models. The traditional approach
to adapting deep models has been fine-tuning; see [15] for
a recent example.

Directly fine-tuning a deep network’s parameters on a
small amount of labeled target data turns out to be prob-
lematic. Fortunately, pre-trained deep models do perform
well in novel domains. Recently, [11, 21] showed that using
the deep mid-level features learned on ImageNet, instead
of the more conventional bag-of-words features, effectively
removed the bias in some of the domain adaptation settings
in the Office dataset [29]. These algorithms transferred the
representation from a large scale domain, ImageNet, as well
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Figure 1: Our architecture optimizes a deep CNN for both
classification loss as well as domain invariance. The model
can be trained for supervised adaptation, when there is a
small amount of target labels available, or unsupervised
adaptation, when no target labels are available. We intro-
duce domain invariance through domain confusion guided
selection of the depth and width of the adaptation layer, as
well as an additional domain loss term during fine-tuning
that directly minimizes the distance between source and tar-
get representations.

as using all of the data in that domain as source data for ap-
propriate categories. However, these methods have no way
to select a representation from the deep architecture and in-
stead report results across multiple layer selection choices.

Dataset bias was classically illustrated in computer vi-
sion by way of the “name the dataset” game of Torralba and
Efros [32]. Indeed, this turns out to be formally connected
to measures of domain discrepancy [23, 6]. Optimizing for
domain invariance, therefore, can be considered equivalent
to the task of learning to predict the class labels while si-
multaneously finding a representation that makes the do-
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mains appear as similar as possible. This principle forms
the essence of our proposed approach. We learn deep rep-
resentations by optimizing over a loss which includes both
classification error on the labeled data as well as a domain
confusion loss which seeks to make the domains indistin-
guishable.

We propose a new CNN architecture, outlined in Fig-
ure 1, which uses an adaptation layer along with a do-
main confusion loss based on maximum mean discrepancy
(MMD) [6] to automatically learn a representation jointly
trained to optimize for classification and domain invariance.
We show that our domain confusion metric can be used both
to select the dimension of the adaptation layers, choose an
effective placement for a new adaptation layer within a pre-
trained CNN architecture, and fine-tune the representation.

Our architecture can be used to solve both supervised
adaptation, when a small amount of target labeled data is
available, and unsupervised adaptation, when no labeled
target training data is available. We provide a comprehen-
sive evaluation on the popular Office benchmark for classi-
fication across visually distinct domains [29]. We demon-
strate that by jointly optimizing for domain confusion and
classification, we are able to significantly outperform the
current state-of-the-art visual domain adaptation results. In
fact, for the case of minor pose, resolution, and lighting
changes, our algorithm is able to achieve 96% accuracy
on the target domain, demonstrating that we have in fact
learned a representation that is invariant to these biases.

2. Related work
The concept of visual dataset bias was popularized

in [32]. There have been many approaches proposed in
recent years to solve the visual domain adaptation prob-
lem. All recognize that there is a shift in the distribu-
tion of the source and target data representations. In fact,
the size of a domain shift is often measured by the dis-
tance between the source and target subspace representa-
tions [6, 13, 23, 26, 28]. A large number of methods have
sought to overcome this difference by learning a feature
space transformation to align the source and target represen-
tations [29, 25, 13, 16]. For the supervised adaptation sce-
nario, when a limited amount of labeled data is available in
the target domain, some approaches have been proposed to
learn a target classifier regularized against the source clas-
sifier [33, 2, 1]. Others have sought to both learn a feature
transformation and regularize a target classifier simultane-
ously [20, 12].

Recently, supervised convolutional neural network
(CNN) based feature representations have been shown to
be extremely effective for a variety of visual recognition
tasks [24, 11, 15, 30]. In particular, using deep representa-
tions dramatically reduce the effect of resolution and light-
ing on domain shifts [11, 21].
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Figure 2: For biased datasets (left), classifiers learned in a
source domain do not necessarily transfer well to target do-
mains. By optimizing an objective that simultaneously min-
imizes classification error and maximizes domain confusion
(right), we can learn representations that are discriminative
and domain invariant.

Parallel CNN architectures such as Siamese networks
have been shown to be effective for learning invariant repre-
sentations [7, 9]. However, training these networks requires
labels for each training instance, so it is unclear how to ex-
tend these methods to unsupervised settings.

Multimodal deep learning architectures have also been
explored to learn representations that are invariant to dif-
ferent input modalities [27]. However, this method oper-
ated primarily in a generative context and therefore did not
leverage the full representational power of supervised CNN
representations.

Training a joint source and target CNN architecture was
proposed by [8], but was limited to two layers and so was
significantly outperformed by the methods which used a
deeper architecture [24], pre-trained on a large auxiliary
data source (ex: ImageNet [4]).

[14] proposed pre-training with a denoising auto en-
coder, then training a two-layer network simultaneously
with the MMD domain confusion loss. This effectively
learns a domain invariant representation, but again, because
the learned network is relatively shallow, it lacks the strong
semantic representation that is learned by directly optimiz-
ing a classification objective with a supervised deep CNN.

3. Training CNN-based domain invariant rep-
resentations

We introduce a new convolutional neural network (CNN)
architecture which we use to learn a visual representation
that is both domain invariant and which offers strong se-
mantic separation. It has been shown that a pre-trained
CNN can be adapted for a new task through fine-tuning [15,

Figure 2: Deep domain confusion: Adding a single adaptation layer after fc7 and compute MMD as the ‘domain loss’.

This paper simply puts the MMD computation in a deeper convolutional neural network, AlexNet, and computes the
MMD (so-called “domain confusion loss”) as the additional term to the overall loss function similarly to DaNN. The
contribution of this paper is to incorporate MMD to a larger, more popular pre-trained model (AlexNet) with a grid
search on the position and the width of a new adaptation layer. Finally, they put the adaptation layer between fc7 and
fc8. Figure 2 shows the structure and the intuition of DDC.

4.3 DAN: Learning Transferable Features with Deep Adaptation Networks
(Long et al., in Proc. of ICML 2015, w/ 960+ citations)

Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk ϵt (θ) = Pr(x,y)∼q [θ (x) ̸= y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , ya
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = ⟨f (x) , µk (p)⟩Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2
k (p, q) !

∥∥Ep [φ (xs)] − Eq

[
φ

(
xt

)]∥∥2

Hk
. (1)

The most important property is that p = q iff d2
k (p, q) = 0

(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = ⟨φ (xs) , φ (xt)⟩, is
defined as the convex combination ofm PSD kernels {ku},

K !
{

k =

m∑

u=1

βuku :

m∑

u=1

βu = 1, βu " 0, ∀u

}
, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel

MK-
MMD

MK-
MMD

MK-
MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source
output

target
output

frozen frozenfrozen fine-
tune

fine-
tune

learn learnlearn learn

Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer ℓ learns a nonlinear mapping hℓ

i =
f ℓ

(
Wℓhℓ−1

i + bℓ
)
, where hℓ

i is the ℓth layer hidden rep-
resentation of point xi,Wℓ and bℓ are the weights and bias
of the ℓth layer, and f ℓ is the activation, taking as recti-
fier units f ℓ(x) = max(0,x) for hidden layers or softmax
units f ℓ (x) = ex/

∑|x|
j=1 exj for the output layer. Letting

Figure 3: Deep Adaptation Networks using MK-MMD are used for regularizing domain shift in fc6-fc8.

DAN also follows the previous works of using MMD to regularize neural network training process and also mainly focus
on AlexNet, which is a typical CNN and can be pre-trained on ImageNet. However, it utilizes a multi-kernel version of
MMD (MK-MMD) to improve the MMD performance, and also put regularization on multiple layers (fc6-fc8) instead
of only one layer (see Figure 3). The key technique MK-MMD is proposed by Gretton et al. (2012) and it is just a
weighted combination of m different PSD kernels.

K ,
{
k =

m∑

u=1

βuku :

m∑

u=1

βu = 1, βu > 0,∀u
}
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The total goal of DAN is to learn:

min
Θ

1

m

m∑

i=1

L
(
θ
(
xSi
)
, ySi
)
+ λ

fc8∑

l=fc6

MMD2
(
H l
S , H

l
T

)

where we use H l
S to represent the learned hidden representations of XS at the l-th layer, similarly for H l

T . Another
notable thing of this paper is that they adopt a linear-time algorithm for getting the unbiased estimate [4].

4.4 JAN: Deep transfer learning with joint adaptation networks
(Long et al., in Proc. of ICML 2017, w/ 300+ citations)

Deep Transfer Learning with Joint Adaptation Networks

Xs

Xt Zt|L|

Zs|L|Zs1

Zt1

Ys

Yt

JMMD

✖

✖

tied tied

φ1

φ1

φL

φL

AlexNet
VGGnet
GoogLeNet
ResNet
……

(a) Joint Adaptation Network (JAN)
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Xt Zt|L|

Zs|L|Zs1

Zt1
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Yt

JMMD
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✖

tied tied

θθ θθ

θθ θθ

φ1

φ1

φL

φL

AlexNet
VGGnet
GoogLeNet
ResNet
……

(b) Adversarial Joint Adaptation Network (JAN-A)

Figure 1. The architectures of Joint Adaptation Network (JAN) (a) and its adversarial version (JAN-A) (b). Since deep features eventually
transition from general to specific along the network, activations in multiple domain-specific layers L are not safely transferable. And the
joint distributions of the activations P (Zs1, . . . ,Zs|L|) and Q(Zt1, . . . ,Zt|L|) in these layers should be adapted by JMMD minimization.

2016). The deep features in standard CNNs must eventually
transition from general to specific along the network, and the
transferability of features and classifiers decreases when the
cross-domain discrepancy increases (Yosinski et al., 2014).
In other words, even feed-forwarding the source and target
domain data through the deep network for multilayer feature
abstraction, the shifts in the joint distributions P (Xs,Ys)
and Q(Xt,Yt) still linger in the activations Z1, . . . ,Z|L| of
the higher network layers L. Taking AlexNet (Krizhevsky
et al., 2012) as an example, the activations in the higher fully-
connected layers L = {fc6, fc7, fc8} are not safely trans-
ferable for domain adaptation (Yosinski et al., 2014). Note
that the shift in the feature distributions P (Xs) and Q(Xt)
mainly lingers in the feature layers fc6, fc7 while the shift
in the label distributions P (Ys) and Q(Yt) mainly lingers
in the classifier layer fc8. Thus we can use the joint distribu-
tions of the activations in layers L, i.e. P (Zs1, . . . ,Zs|L|)
and Q(Zt1, . . . ,Zt|L|) as good surrogates of the original
joint distributions P (Xs,Ys) and Q(Xt,Yt), respectively.
To enable unsupervised domain adaptation, we should find
a way to match P (Zs1, . . . ,Zs|L|) and Q(Zt1, . . . ,Zt|L|).

4.1. Joint Maximum Mean Discrepancy

Many existing methods address transfer learning by bound-
ing the target error with the source error plus a discrepancy
between the marginal distributions P (Xs) and Q(Xt) of
the source and target domains (Ben-David et al., 2010). The
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012),
as a kernel two-sample test statistic, has been widely ap-
plied to measure the discrepancy in marginal distributions
P (Xs) and Q(Xt) (Tzeng et al., 2014; Long et al., 2015;
2016). To date MMD has not been used to measure the
discrepancy in joint distributions P (Zs1, . . . ,Zs|L|) and
Q(Zt1, . . . ,Zt|L|), possibly because MMD has not been di-
rectly defined for joint distributions by (Gretton et al., 2012)
while in conventional shallow domain adaptation methods
the joint distributions are not easy to manipulate and match.

Following the virtue of MMD (5), we use the Hilbert space
embeddings of joint distributions (3) to measure the dis-
crepancy of two joint distributions P (Zs1, . . . ,Zs|L|) and

Q(Zt1, . . . ,Zt|L|). The resulting measure is called Joint
Maximum Mean Discrepancy (JMMD), which is defined as

DL (P, Q) , kCZs,1:|L| (P )� CZt,1:|L| (Q)k2⌦|L|
`=1H` . (8)

Based on the virtue of the kernel two-sample test theory
(Gretton et al., 2012), we will have P (Zs1, . . . ,Zs|L|) =
Q(Zt1, . . . ,Zt|L|) if and only if DL(P, Q) = 0. Given
source domain Ds of ns labeled points and target domain
Dt of nt unlabeled points drawn i.i.d. from P and Q respec-
tively, the deep networks will generate activations in layers
L as {(zs1

i , . . . , z
s|L|
i )}ns

i=1 and {(zt1
j , . . . , z

t|L|
j )}nt

j=1. The
empirical estimate of DL(P, Q) is computed as the squared
distance between the empirical kernel mean embeddings as

bDL (P, Q) =
1

n2
s

nsX

i=1

nsX

j=1

Y

`2L
k`
�
zs`

i , zs`
j

�

+
1

n2
t

ntX

i=1

ntX

j=1

Y

`2L
k`
�
zt`

i , zt`
j

�

� 2

nsnt

nsX

i=1

ntX

j=1

Y

`2L
k`
�
zs`

i , zt`
j

�
.

(9)

Remark: Taking a close look on the objectives of MMD (6)
and JMMD (9), we can find some interesting connections.
The difference is that, for the activations Z` in each layer ` 2
L, instead of putting uniform weights on the kernel function
k`(z`i , z

`
j) as in MMD, JMMD applies non-uniform weights,

reflecting the influence of other variables in other layers
L\`. This captures the full interactions between different
variables in the joint distributions P (Zs1, . . . ,Zs|L|) and
Q(Zt1, . . . ,Zt|L|), which is crucial for domain adaptation.
All previous deep transfer learning methods (Tzeng et al.,
2014; Long et al., 2015; Ganin & Lempitsky, 2015; Tzeng
et al., 2015; Long et al., 2016) have not addressed this issue.

4.2. Joint Adaptation Networks

Denote by L the domain-specific layers where the activa-
tions are not safely transferable. We will formally reduce
the discrepancy in the joint distributions of the activations

Figure 4: The architectures of Joint Adaptation Network (JAN) (a) and its adversarial version (JAN-A) (b).

JAN further considers jointly regularizing multiple hidden representations together with JMMD distance, which is
detailed in the paper. One interesting thing is that the author also propose an adervsial version of JAN based on JMMD
as the learning objective:

min
f∈H

max
θ

1

m

m∑

i=1

L (f (xsi ) , y
s
i ) + λ JMMDL(PS , PT ; θ).

This adversarial training idea is directly following the DANN, which learns to maximize the distance metric performance
while minimize classification error at the same time.

4.5 DANN: Unsupervised Domain Adaptation by Backpropagation
(Ganin and Lempitsky, in Proc. of ICML 2015, w/ 1100+ citations)

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

Figure 5: DANN consists of: 1) a feature extract (green), 2) a label predictor (blue), and 3) a domain classifier (red).

We now present the very first work using adversarial training as the main idea for domain adaptation, namely DANN. As
Figure 5 shows, DANN has three components:
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• feature extractor: this network Gf (x; θf ) = f is usually a feed-forward network or CNN for extracting
abstract features from raw inputs with multiple layers. It produces a feature vector f for each input. For
illustrative purpose, we use a single layer network:

Gf (x;W,b) = sigm(Wx+ b).

• label predictor: This is a normal classification network, denoted as Gy (f ; θy) = y, where y ∈ Y , for
predicting the label with the extracted feature vector. For illustrative purpose, we use a simple logistic
regression classifier:

Gy (Gf (x);V, c) = softmax (VGf (x) + c) .

The associated loss function for classification error is thus:

Ly (Gy (Gf (xi)) , yi) = log
1

Gy (Gf (x))yi

• domain classifier: This is a novel contribution. It also takes the f as the input, while the label of each sample
is based on whether it is from the source domain or the target domain. Thus, we denote it as Gd (f ; θd) = d,
where d ∈ {S := 1, T := 0}. Here we use another single layer network (with different parameters) as an
example:

Gd (Gf (x);u, z) = sigm
(
u>Gf (x) + z

)
.

Accordingly, the loss function for domain classification is:

Ld (Gd (Gf (xi)) , di) = di log
1

Gd (Gf (xi))
+ (1− di) log

1

1−Gd (Gf (xi))
.

When learning the whole architecture, we would like to minimize the total loss function L:

E(W,V,b, c,u, z) =
1

m

m∑

i=1

Liy(W,b,V, c)− λ
(

1

m

m∑

i=1

Lid(W,b,u, z) +
1

n

m+n∑

i=m+1

Lid(W,b,u, z)

)
.

Note that m = |XS | and n = |XT | and we concatenate the two sets in to a new set X with the ordering that source
samples are all before target samples. By replacing the example parameters back to the general case, we have:

E (θf , θy, θd) =
1

m

m∑

i=1

Liy (θf , θy)− λ
(

1

m

m∑

i=1

Lid (θf , θd) +
1

n

m+n∑

i=m+1

Lid (θf , θd)
)
,

by finding that:
(
θ̂f , θ̂y

)
= argmin

θf ,θy

E
(
θf , θy, θ̂d

)

θ̂d = argmax
θd

E
(
θ̂f , θ̂y, θd

)
,

where Liy (θf , θy) = Ly (Gy (Gf (xi; θf ) ; θy) , yi) and Lid (θf , θd) = Ld (Gd (Gf (xi; θf ) ; θd) , di). We then use a
gradient reversal layer for such an adversarial learning objective:

θf ←− θf − µ
(
∂Liy
∂θf

− λ∂L
i
d

∂θf

)

θy ←− θy − µ
∂Liy
∂θy

θd ←− θd − µλ
∂Lid
∂θd

where µ is the learning rate. Simply put, DANN is maximizing the performance of domain classifier such that it can better
measure the distance between the two domains. However, it use gradient reversal, such that it regularizes the feature
extractor NOT to go the direction that leads better domain classification accuracy. Therefore, the feature extractor has
to transform the two domain inputs with similar representation distributions. With the label predictor as the primary
supervision, such learned features can still do very well for the task T .
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Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

We note that the unified framework presented in the previ-
ous section has enabled us to compare prior domain adversar-
ial methods and make informed decisions about the different
factors of variation. Through this framework we are able
to motivate a novel domain adaptation method, ADDA, and
offer insight into our design decisions. In the next section
we demonstrate promising results on unsupervised adapta-
tion benchmark tasks, studying adaptation across digits and
across modalities.

5. Experiments

We now evaluate ADDA for unsupervised classification
adaptation across four different domain shifts. We explore
three digits datasets of varying difficulty: MNIST [18],
USPS, and SVHN [19]. We additionally evaluate on the
NYUD [20] dataset to study adaptation across modalities.
Example images from all experimental datasets are provided
in Figure 4.

For the case of digit adaptation, we compare against mul-
tiple state-of-the-art unsupervised adaptation methods, all
based upon domain adversarial learning objectives. In 3 of
4 of our experimental setups, our method outperforms all
competing approaches, and in the last domain shift studied,
our approach outperforms all but one competing approach.

We also validate our model on a real-world modality
adaptation task using the NYU depth dataset. Despite a large
domain shift between the RGB and depth modalities, ADDA
learns a useful depth representation without any labeled
depth data and improves over the nonadaptive baseline by
over 50% (relative).

5.1. MNIST, USPS, and SVHN digits datasets

We experimentally validate our proposed method in an un-
supervised adaptation task between the MNIST [18], USPS,

and SVHN [19] digits datasets, which consist 10 classes of
digits. Example images from each dataset are visualized in
Figure 4 and Table 2. For adaptation between MNIST and
USPS, we follow the training protocol established in [21],
sampling 2000 images from MNIST and 1800 from USPS.
For adaptation between SVHN and MNIST, we use the full
training sets for comparison against [16]. All experiments
are performed in the unsupervised settings, where labels in
the target domain are withheld, and we consider adaptation
in three directions: MNIST!USPS, USPS!MNIST, and
SVHN!MNIST.

For these experiments, we use the simple modified LeNet
architecture provided in the Caffe source code [18, 22].
When training with ADDA, our adversarial discriminator
consists of 3 fully connected layers: two layers with 500
hidden units followed by the final discriminator output. Each
of the 500-unit layers uses a ReLU activation function.

Results of our experiment are provided in Table 2. On the
easier MNIST and USPS shifts ADDA achieves comparable
performance to the current state-of-the-art, CoGANs [13],
despite being a considerably simpler model. This provides
compelling evidence that the machinery required to generate
images is largely irrelevant to enabling effective adaptation.
Additionally, we show convincing results on the challenging
SVHN and MNIST task in comparison to other methods,
indicating that our method has the potential to generalize
to a variety of settings. In contrast, we were unable to get
CoGANs to converge on SVHN and MNIST—because the
domains are so disparate, we were unable to train coupled
generators for them.

5.2. Modality adaptation

We use the NYU depth dataset [20], which contains
bounding box annotations for 19 object classes in 1449 im-
ages from indoor scenes. The dataset is split into a train (381

Figure 6: ADDA consists of three stages: 1) pre-training a source domain classifier; 2) learning a target encoder
(another CNN) such that the discriminator cannot distinguish whether the example is from which domain, 3) and finally
testing target inputs with the learned target encoder.

4.6 ADDA: Adversarial discriminative domain adaptation
(Tzeng et al., in Proc. of CVPR 2017, w/ 720+ citations)

Figure 6 shows a more recent framework for domain adaptation, which is also based on adversarial training:

1. Pre-training a source encoder MS(·) and minimize the error of the classifier C(·) in source domain:

min
MS ,C

Lcls (XS , YS) = −E(xS
i ,y

S
i )∼(XS ,YS)

K∑

k=1

1[k=ySi ]
logC

(
MS

(
xSi
))

2. Learning a discriminator D(·) such that it cannot distinguish source and target samples. Thus, the learning has
two optimization objectives as follows. (Note that the target encoder MT is initialized by the source encoder
MS , and MS is fixed in this phase.)
• Minimizing the adversarial discriminator loss:

min
D
LadvD

(XS , XT ,MS ,MT ) = −ExS
i ∼XS

[
logD

(
Ms

(
xSi
))]
−ExT

i ∼XT

[
log
(
1−D

(
Mt

(
xTi
)))]

• Minimizing the adversarial mapping loss:

min
MT

LadvM
(XS , XT , D) = −ExT

i ∼XT

[
logD

(
MT

(
xTi
))]

Note that we use independent mappings for source and target and learn only MT adversarially. This mimics the GAN
setting, where the real distribution remains fixed, and the generating distribution is learned to match it. In our case of
domain adaptation, the source domain input distribution is also fixed after the first stage (MS is fixed), while we learn a
MT to match it. In DANN, the gradient reversal layer is actually directly optimizing the loss by LadvM

= −LadvD
.

5 Conclusion

This introduction focuses on how we can regularize deep neural networks such that only learning from labeled source
domains and unlabeled target domains can maintain a good generalization performance. Recent methods either use
MMD as additional regularization terms to control the learn representations are domain-invariant, or use adversarial
learning method to simultaneously learn 1) to find a good domain-distance measure, 2) to find a domain-invariant
representation such that learned classifiers can be shared. These works usually only conduct experiments on computer
vision datasets or using bag of words as features for textual datasets. The potential of such neural domain adaptation
methods are surprisingly underexplored for same reasons. A key challenge of applying these methods in NLP is the
lack of large pre-trained deep models back then. NLP models were usually based on RNN structure instead CNNs
that are naturally easy to control transferring on which parts. In the era of BERT, we think it is very meaningful and
necessary to examine such domain adaptation methods in NLP applications as well.
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