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1 Few-shot Learning

Problem Statement. In few-shot classification, we have three datasets: a training set, a support set
and a query set. The support set and the query set share the same label space, but the training set
has its own label space that is disjoint with support/query set. If the support set contains K labeled
examples for each C unique classes, the target few-shot problem is called C-way K-shot.

Benchmarks. The Omniglot dataset [1] contains 50 examples of 1623 handwritten characters from
50 writing systems. It is considered “transpose” of MNIST dataset, because the number of classes is
large in Omniglot, but the examples per class is small. miniImageNet [2] provides 100 classes and
600 examples for each class. Standard setting set aside 20 classes for few-shot testing.

Figure 1: Omniglot dataset. Right: An example of 20-way one-shot classification task. The classes
in support/query set should not appear in training set.

Discussion. A straight-forward way is to train the classifier on the support set. However, due to
lack of labeled samples in each class, the performance is not satisfactory. One effective way to exploit
training set is to mimic few-shot learning via episode-based training. In each episode, we sample
C classes from training set and sample K examples from each of them. This gives us a train set.
Also we sample several examples from the same C classes for a test set. These train/test sets align
with support/query sets. We train the model to learn well on these train and test sets, so that it can
generalize to support/query set. This is also the basic idea of meta-learning.

2 Siamese Network [3]

High-level idea. (1) Train a model to discriminate whether input pairs are from the same class or
different class. This task is also called verification task. (2) Re-used the network for one-shot learning
without any re-training.
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Figure 2: Siamese Network with 2 hidden layer for binary classification with logistic prediction p.

Verification. Use some off-the-shelf encoder which outputs representation h1 and h2 for the two
inputs x1 and x2. Use logistic regression to output the probability p that they belong to the same
class.
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where σ is the sigmoid function, and αj are learned during training.

One-shot Prediction. Query the learned verification network with x̂ in the query set, and each
xc, c ∈ {1, 2, ..., C} in the support set. The prediction is the class with maximum similarity p.

3 Matching Networks [2]

3.1 Model Architecture

Matching networks are expected to produce sensible test labels for unobserved classes without any
changes to the network. That is, we wish to map from a small set of k examples of image-label
pairs S = {(xi, yi)}ki=1 to a classifier cS(x̂), which gives a distribution over outputs ŷ, given a test
example x̂. The mapping S → cS(x̂) is parameterized by a neural network P (ŷ|x̂, S).
In one-shot evaluation, we feed the new support set S′ to the learned neural network P , so that we
can make predictions about the appropriate label ŷ for each query example x̂ with P (ŷ|x̂, S′).
Matching Networks in its simplest form computes ŷ as follows:

ŷ =

k∑
i=1

a(x̂, xi)yi (2)

where xi and yi are instances in the support set, and a is an attention mechanism.

Ways to Interpret Eq. (2) The prediction in Eq. (2) subsumes kernel density estimator and kNN
methods. Where the attention mechanism a is a kernel on X × X , then Eq. 2 is akin to a kernel
density estimator. Where a = 0 for d(x̂, xi) > b and a = 1 for d(x̂, xi) < b, Eq. 2 is the same as
k− b nearest neighbor. From another perspective, a acts as an attention mechanism and yi acts as the
memories bound to the corresponding xi. With this, given a input, we “point” to the corresponding
example in the support set, retrieving its label.

The Attention Kernel. The attention kernel a, in its most general form, can be written as,

a(x̂, xi) =
exp(c(f(x̂), g(xi))∑k
j=1 exp(c(f(x̂), g(xj)))

(3)

where c(., .) measures cosine distance1, f(.) and g(.) are encoders to embed x̂ and xj (potentially
f = g). f and g can be deep CNNs for image tasks, or simple word embeddings for language tasks.

1In the Prototypical Network paper, the authors found using square Euclidean distance yields better results.
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Figure 3: Matching Networks Architecture

Full Context Embeddings. Though the classification strategy is fully conditioned on the whole
support set, the encoding process of xj is myopic, in the sense each xj is encoded independently of
other elements in support set S. Furthermore, x̂ should also be encoded with the knowledge of the
support set S.

In light of this, we introduce Full Context Embeddings, i.e., g(xj) become g(xj , S), where S can
influence how we encode xj . We use a bidirectional LSTM to encode xi in the context of S considered
as a sequence. That is, g(xi, S) = g′(xi) +

−→
h i +

←−
h i, with:

−→
h i,
−→c i = LSTM(g′(xi),

−→
h i−1,

−→c i−1)
←−
h i,
←−c i = LSTM(g′(xi),

←−
h i−1,

←−c i−1)

As for f(.), f(x̂) becomes f(x̂, S) with read-attention over the whole set S.

f(x̂, S) = attLSTM(f ′(x̂), g(S),K) (4)

where f ′(x̂) is the original f(x̂) provided by the encoder, and is used as the input to LSTM (kept
constant at each timestamp). g(S) is the set over which we attend, embedded with g. K is the
unrolling steps of the LSTM.

3.2 Training Strategy

The training procedure has to be chosen carefully so as to match inference at test time. In each
“episode”, we sample L in all possible labels (e.g., {cats, dogs} for two-way classification), then we
sample instances of L into a support set S and a query set B (both contain examples of cats and
dogs).2 More precisely, the Matching Networks’ training objective is,

θ∗ = argmax
θ

EL∼T

ES∼L,B∼L
 ∑
(x,y)∈B

logPθ(y|x, S)

 (5)

The model works well when sampling S′ ∼ T ′ from a different distribution of novel labels. The
model does not need any fine-tuning on the classes it has never seen due to its non-parametric nature.

4 Prototypical Networks [4]

High-level idea. There exists an embedding in which points cluster around a single prototype
representation for each class. We want to the learn the metric space in which classification can be
performed by computing distances to prototype representations of each class.

2This is, in fact, formulating the problem into meta-learning. The training procedure learns to learn from
support set S to minimize a loss over query set B.
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Figure 4: Prototypical Networks in few-shot and zero-shot scenarios.

4.1 Notation

We have a support set of N labeled examples S = {(x1, y1), (x2, y2), ..., (xN , yN )}, where each
xi ∈ RD is aD-dimensional feature vector of the example and yi ∈ {1, 2, ...,K} is the corresponding
label. Sk denotes the examples labeled with class k.

4.2 Model

Prototypical Networks compute an M -dimensional representation ck ∈ RM , called prototype, of
each class, through an embedding function fφ : RD → RM . Each prototype is the mean vector of
the embedded support points belonging to its class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi) (6)

Given a distance function d : RM ×RM → [0,+∞), Prototypical Networks makes the prediction
as follows:

pφ(y = k|x) = exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), c′k))

(7)

The optimization objective is negative log-probability of true class k, J(φ) = − log pφ(y = k|x),
and is optimized with standard SGD.

4.3 Interpretation

Mixture Density Estimation. For a particular class of distance functions, known as regular Breg-
man divergences, the Prototypical Networks algorithm is equivalent to performing mixture density
estimation on the support set with an exponential family density. 3

For Bregman divergence that the cluster representative achieving minimal distance to its assigned
points is the cluster mean. Thus Eq. (6) yields the optimal cluster representatives given the support
set labels when a Bregman divergence is used.

For any exponential family distribution pφ(z|θ) with parameters θ and cumulant function ψ can be
written in terms of a uniquely determined regular Bregman divergence.4

pψ(z|θ) = exp{−dφ(z, µ(θ))− gφ(z)} (8)

If our prediction model is a regular exponential family mixture model, with parameters Γ =
{θk, πk}Kk=1, it can be expressed with

p(z|Γ) =
K∑
k=1

πkpφ(z|θk) =
K∑
k=1

πk exp(−dφ(z, µ(θk))− gφ(z)) (9)

3An example of regular Bregman divergence is Euclidean distance. An example of exponential family
distribution is normal (Gaussian) distribution.

4There is a one-to-one mapping between member of exponential family and unique Bregman Divergence.
Here, the cumulant function ψ maps to a function θ, so that the distribution fits in the Bregman divergence form.
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So that during inference, we assign label k to unlabeled point z with probability p(y = k|z).

p(y = k|z) = πk exp(−dφ(z, µ(θk))∑
k′ πk′ exp(−dφ(z, µ(θk′))

(10)

Comparing Eq. (7) to Eq. (10), we found that Eq. (7) is a equally-weighted mixture model with
one cluster per class. Prediction with Eq. (7) is the same as cluster assignment with Eq. (10) with
fφ(x) = z and ck = µ(θk).

Above all, we can interpret Prototypical Networks as doing clustering with mixture density estimation,
which an exponential family distribution determined by dφ.

Linear Model. When we use Euclidean distance d(z, z′) = ||z − z′||2, the model in Eq. (7) is
equivalent to a linear model, We can expand the terms in Eq. (7) with

−||fφ(x)− ck||2 = −fφ(x)T fφ(x) + 2cTk fφ(x)− cTk ck (11)

The first term is constant and won’t affect softmax probabilities. The remaining parts are

2cTk fφ(x)− cTk ck = wT
k fφ(x) + bk (12)

where wk = 2ck and bk = −cTk ck. In their experiments, they found Euclidean distance is an
effective choice despite the equivalence to a linear model. The authors hypothesize this is because of
all the required non-linearity are alreay learned within embedding function fφ.

Comparison to Matching Networks. The two models are the same in one-shot scenario when
both are using Euclidean distance, because the average of one point is itself, i.e., ck = xk.

4.4 Episode Composition

In previous work, people usually choose Nc classes and NS support points per class in order to match
the expected situation at test-time. The authors have found, however, it can be extremely beneficial to
train with a higher Nc, than will be used at test-time; but it’s usually best to train and test with the
same Ns.

5 Relation Networks [5]

In previous work we’re using cosine similarity or Euclidean distance. In relation network we aim
learn a transferrable deep metric for comparing the relation between images (few-shot learning) or
between image and class descriptions (zero-shot learning). The Relation Networks has two modules.
An embedding module generates representations of the query and training images; a relation module
compares the embeddings and determines if they’re from matching categories or not.

Figure 5: Relation Network architecture for a 5-way 1-shot problem with one query example.

5



5.1 Model Design

One-shot. In theC-way one-shot setting, we generateC relation scores ri,j for the relation between
one query input xj and training sample set examples xi,

ri,j = gψ(C(fφ(xi), fφ(xj)), i = 1, 2, ..., C (13)

where fφ is the embedding module, gψ is the relation module, C means concatenation.

Specifically, fφ consists of four convolutional blocks, and gψ consists of two convolutional blocks
and two fully connected layers. One convolutional block contains a 64 filter 3 × 3 convolution,
followed by batch normalization, ReLU non-linearity and 2× 2 max pooling.

K-shot. We element-wise sum over the embedding module outputs of all samples from the same
class to form this class’ feature map. Then this pooled class-level feature is combined with query
image feature map to calculate a score, as in Eq. (13).

Objective. Mean square error (MSE) is used because we can consider it as a regression problem on
predicting relation “scores”.

5.2 Analysis

Why is relation module helpful? In previous work cosine similarity and Euclidean distance are
used. These metrics solely do comparison in an element-wise way. Also, prototypical network
assumes linear separability after the embedding, which in fact strongly depend on the ability of
embedding module. By deep learning a non-linear similarity metric jointly with the embedding,
Relation Network can better identify matching/mismatching pairs.
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