
Overview of Meta Learning: Learning to Learn

Jiao Sun
Computer Science Department

University of Southern California
jiaosun@usc.edu

Abstract

Meta-learning problems are that when there is a distribution of tasks, and we would
like to obtain an agent that performs well (i.e., learns quickly) when presented with
a previously unseen task sampled from this distribution. We analyze a family of
optimization-based algorithms for learning a parameter initialization that can be
fine-tuned quickly on a new task, which consists of MAML, first-order MAML,
iMAML and the main idea of Auto-Meta.

1 Introduction to Meta Learning

Thrun and Pratt [2012] stated that, given one task to solve, an algorithm is learning “if its performance
at the task improves with experience”, while, given a family of tasks to solve, an algorithm is learning
to learn if “its performance at each task improves with experience and with the number of tasks”.
We refer to the last one as a meta-learning algorithm. For example, we evaluate the meta-learning
on German shepherd, golden retriever and pugs It does not learn how to solve a specific task. It
successively learns to solve many tasks, and each time it learns a new task, it becomes better at
learning new tasks: it learns to learn. There are several ways that meta learning solves a few-shot
classification task. Metric learning learns a distance function between data point and labeled ones.

2 Model-Agnostic Meta-Learning: MAML

Finn et al. [2017] claimed that the goal of the trained model is to quickly learn a new task from
a small amount of new data, and the model is trained by the meta-learner to be able to learn on a
large number of different tasks. The key idea underlying their method is to train the model’s initial
parameters such that the model has maximal performance on a new task after the parameters have
been updated through one or more gradient steps computed with a small amount of data from that
new task. This work does not expand the number of learned parameters nor place constraints on the
model architecture (by requiring a recurrent model or Siamese network [Koch et al., 2015]). it can be
readily combined with fully connected, convolutional, or recurrent neural networks. It can also be
used with a variety of loss functions.

2.1 Meta-learning Problem Set-up

The goal of few-shot meta-learning is to train a model that can quickly adapt to a new task
using only a few data points and training iterations. The problem should be applied to a va-
riety of learning problems. Consider a model, denoted by f , that maps observations x to
outputs a. A generic notion of a learning task is below. Formally, for each task T =
{L(x1, a1,, xH , aH), q(x1), q(xt+1|xt, at), H}: a loss function L, a distribution over the ini-
tial observation q(x1, a transition distribution q(xt+1|xt, at), and an episode length H . The model
may generate samples of length H by choosing an output at at each time t. In order to explicitly
encourage a neural network which learns internal features that are applicable for all the tasks. Since

For CSCI-699.

Figure 1: Diagram of the model-agnostic meta-learning algorithm (MAML), which optimizes for a
representation θ that can quickly adapt to new tasks.

the model will be fine-tuned using a gradient-based learning rule on a new task. The diagram of
MAML is shown in Figure 1. They aim to find model parameters that are sensitive to changes in the
task, such that small changes in the parameters will produce large improvements on the loss function
of any task drawn from p(T), when altered in the direction of the gradient of that loss.

2.2 A Model-Agnostic Meta-Learning Algorithm

The assumption is that the model is represented by a parameterized function fθ with parameters θ,
the loss function is smooth enough in θ so we can use gradient-based learning techniques. When
adapting to a new task Ti, θ becomes θ

′
, and it is calculated by:

θ
′

i = θ − α5θ LTi(fθ)

The step size α may be fixed as a hyperparameter or meta-learned here we only consider one gradient
update. More concretely, the meta-objective is as follows:

min
θ

∑
Ti∼p(T)

LTi(fθ′i) =
∑

Ti∼p(T)

LTi(fθ−α5θLTi (fθ))

The meta-optimization is performed over the model parameter θ, whereas the objective is computed
using the updated model parameters θ

′
. The meta-optimization across tasks is performed via SGD.

θ ← θ − β 5θ
∑

Ti∼p(T)

LTi(fθ′i)

2.3 Species of MAML

They discuss the specific instantiations of meta-learning algorithm for supervised learning and
reinforcement learning. For supervised learning, the loss function can be mean-squared error or
cross-entropy loss. For reinforcement learning, the model being learned, fθ, is a policy that maps
from states xt to a distribution over actions at at at each timestep t ∈ {1, ...,H}, the loss function
for task Ti and model fφ is:

LTi = −Ext,at∼fφ,qTi [

H∑
t=1

Ri(xt, at)]

Then we use these customized loss functions in different scenarios to update the gradient in the
above accordingly. Note that the MAML meta-gradient update involves a gradient through a gradient.
Computationally, this requires an additional backward pass through f to compute Hessian-vector,
which brings the significant computational cost.

The authors of MAML also proposed a variant called first-order MAML (FOMAML), which is
defined by ignoring the second derivative terms, avoiding this problem but at the expense of losing

2

some gradient information. Surprisingly, though, they found that FOMAML worked nearly as well
as MAML on the Mini ImageNet dataset, which indicates that most of the improvement in MAML
comes from the gradients of the objective at the post-update parameter values, rather than the second
order updates from differentiating through the gradient update. It also led to roughly 33% peed-up in
the network.

3 On First-order Meta-Learning Algorithms: FMAML

Consider the optimization problem of MAML: find an initial set of parameters θ, such that from
a randomly sampled task T with the corresponding loss LT , the learner will have low loss after k
updates. That is:

min
φ

ET [LT (UkT (φ))]

where UkT is the operator that updates θk times using data sampled from T . MAML achieves it with
the inner-loop optimization uses training samples A, whereas the loss is computed using test samples
B. This way, MAML optimizes for generalization.

min
φ

ET [LT ,B(UT ,A(φ))]

MAML works by optimizing this loss through stochastic gradient descent, i.e., computing

gMAML =
∂

∂φ
LT ,B(UT ,A(φ)) = U

′

T ,A(φ)L
′

T ,B(φ̃)

where φ̃ = UT ,A(φ)), U
′

T ,A(φ)) is the Jacobian matrix of the update operation UT ,A(φ)) = φ+g1 +

g2 + ...+ gk. FOMAML treats these gradients as constants, thus gFOMAML = LT ,B(φ̃). Reptile is
also a first-order gradient-based meta-learning algorithm shown in the above.

While MAML calculates the gradient with the loss function in the test data, Reptile updates k steps
of gradients in sample tasks, and use the difference between current gradient and initial gradient to
update. In the last step, instead of simply updating φ in the direction φ̃− φ, we can treat φ̃− φ as a
gradient and plug it into an adaptive algorithm such as Adam.

Unlike in the discussion and analysis of MAML, they do not consider a training set and test set from
each task; instead, they assume that each task gives us a sequence of k loss functions L1, L2, ..., Lk;
for example, classification loss on different minibatches. They use the following definitions:

gi = L
′

i(φi) gradient obtained during SGD

φi+1 = φi − αgi
ḡi = L

′

i(φ1)

H̄i = L
′′

i (φ1)

To analyze why Reptile works, they approximate the update using a Taylor series.

3

5

6

They show that the Reptile update maximizes the inner product between gradients of different
minibatches from the same task, corresponding to improved generalization. This finding may have
implications outside of the meta-learning setting for explaining the generalization properties of SGD.
Our analysis suggests that Reptile and MAML perform a very similar update, including the same two
terms with different weights.

4 Meta-Learning with Implicit Gradients: iMAML

MAML process requires higher-order derivatives, imposes a non-trivial computational and memory
burden, and can suffer from vanishing gradients. They also differentiate through the optimization
path as shown in the Figure 2. By leveraging the implicit differentiation approach, they derive an
analytical expression for the meta (or outer level) gradient that depends only on the solution to the
inner optimization and not the path taken by the inner optimization algorithm.

iMAML reformulates the goal of MAML as to learn models from of the form hφ(x) : X → Y .
Performance on a task is specified by a loss function L(φ,D) as a function of parameter function
and dataset. The goal for task Ti is to learn task-specific parameters φ using Dtr

i such that we can
minimize the population or test loss of the task L(φi,Dtesti). In the general bi-level metal-learning
setup, the goal of meta-learning is to learn meta-parameters that produce good task specific parameters
after adaptation, as specified below:

θ∗ML := arg min
θ∈Θ

F (θ),where F (θ) =
1

M

M∑
i=1

L(Alg(θ,Dtri),Dtesti).

we typically interpret Alg(θ,Dtri as either explicitly or implicitly solving an underlying optimization
problem, so that we can get a generalization performance by using the adaptation procedure with the
meta-learned parameters as φj = Alg(θ∗ML,Dtrj).

To avoid over-fitting in the inner level, they consider a more explicitly regularized algorithm:

Alg?(θ,Dtri) = arg min
φ′∈Φ

L(φ
′
,Dtri) +

λ

2
||φ

′
− θ||2

With notation

Li(φ) := L(φ,Dtesti), L̂ := Lφ,Dtri), Algi(θ) := Alg(θ,Dtri)

Then we can rewrite the bi-level meta-learning problem as:

Alg?i (θ) := arg min
φ′∈Φ

Gi(φ
′
, θ),where Gi(φ

′
, θ) = L̂i(φ

′
) +

λ

2
||φ

′
− θ||2 for inner level, and

θ∗ML := arg min
θ∈Θ

F (θ),where F (θ) =
1

M

M∑
i=1

Li(Alg?(θ)) for outer level

4.1 The iMAML algorithm

Our aim is to solve bi-level meta-learning problem using an iterative gradient based algorithm of the
form. The gradient descent update be expanded using the chain rule as:

θ ← θ − η 1

M

M∑
i=1

dAlg?i (θ)

dθ
5φ Li(Alg?i (φ))

Here 5φLi(Alg?i (φ) is simply 5φLi(φ)|φ=Alg?(θ) which can be easily obtained in practice via
automatic differentiation. We must compute dAlg?i (θ)

dθ .

Consider Alg?i (φ) for task Ti, let φi = Alg?i (θ) be the result of Alg?i (φ). If (I + 1
λ 5

2
φ L̂i(φi))−1 is

invertible, then the derivative Jacobian is

dAlg?i (θ)

dθ
= (I +

1

λ
52
φ L̂i(φi))−1

4

Figure 2: To compute the meta-gradient
∑
i
dLi(φi)
dθ , the MAML algorithm differentiates through

the optimization path, as shown in green, while first-order MAML computes the meta-gradient by
approximating dφi

dθ as I . Our implicit MAML approach derives an analytic expression for the exact
meta-gradient without differentiating through the optimization path by estimating local curvature.

Note that the derivative (Jacobian) depends only on the final result of the algorithm, and not the
path taken by the algorithm. Thus, in principle any approach of algorithm can be used to compute
Alg?i (θ), thereby decoupling the meta-gradient computation from choice of inner level optimizer.
However, it is difficult to use it directly in practice since the meta-gradients require computation of
Alg?i (θ), which is the exact solution to the inner optimization problem, we can maybe only get the
approximate solutions.

First, we consider an approximate solution to the inner optimization problem, that can be obtained
with iterative optimization algorithms like gradient descent.

Definition 1. (δ-approx. algorithm) LetAlgi(θ) be a δ-accurate approximation of Algo?i (θ), i.e.,

‖Algi(θ)−Alg?i (θ)‖ ≤ δ

We will perform a partial or approximate matrix inversion given by:

Definition 2. (δ
′− approximates Jacobian-vector product)let gi be a vector such that

‖gi − (I +
1

λ
52
φ L̂i(φi))−1)5φ Li(φi)‖ ≤ δ

′

where φi = Algi(θ) and Algi is based on the definition 1, therefore gi in the above equation is an
approximation of the meta-gradient for task Ti. Observe that gi can be obtained as an approximate
solution to the optimization problem according to the CG algorithm:

min
w
wT (I +

1

λ
52
φ L̂i(φi))w − wT 5φ Li(φi)

Then we get the iMAML algorithm as shown in Figure 3.

5 Auto-Meta: Automated Gradient Based Meta Learner Search

The goal in Kim et al. [2018] is to automatically find the optimal network architecture for gradient-
based meta-learners. Considering the loss function L for given tasks j represented by training and
test data sets (Dtr

j , D
test
j), this can be for formulated as:

min
A,θ

∑
j

LDtest
j , U(Dtr

j , θ;A))

where A and θ are the neural network architecture and its parameters, respectively. U denotes the
computation of parameter updates using one or more gradient descent steps. A natural and simply way
to solve this problem is to minimize the loss L over parameters, and keep the candidate architectures
fixed. Then based on some promising architectures, more complicated architectures are searched
progressively. By repeating these two steps, we can obtain a good approximate solution to Equation
above.

7

Figure 3: Algorithm for iMAML

As the gradient-based meta-learning algorithm, they adopt Reptile. As the network architecture search
method, they use the PNAS algorithm [Liu et al., 2018] where three layers (i.e., block, cell, and
network) of abstraction for representing a neural network topology were defined. At most B blocks
which represent a combination operators applied to two inputs are included in a cell. This cell is
then stacked a certain number of times to create a full CNN. During the architecture search, the cells
“progressively” get more complicated by adding a block to themselves. Without expensive training
procedure, the performance of each cell is evaluated with a surrogate predictor, such as LSTM to
rank all expanded candidate cells. Then, CNNs with the top K cells are trained and evaluated. We
continue in this way until each cell has the maximum number of blocks.

This gradient based meta learners with automatically search architectures have much better results
than other meta-learners with human-crafted models on some few shot image classification tasks
and compatible results with state-of-the-art techniques which employed more sophisticated auxiliary
components such as encoder and decoder networks for the tasks.

References
C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1126–1135. JMLR. org, 2017.

J. Kim, S. Lee, S. Kim, M. Cha, J. K. Lee, Y. Choi, Y. Choi, D.-Y. Cho, and J. Kim. Auto-meta:
Automated gradient based meta learner search. arXiv preprint arXiv:1806.06927, 2018.

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition.
In ICML deep learning workshop, volume 2, 2015.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive neural architecture search. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 19–34, 2018.

S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012.

8

	Introduction to Meta Learning
	Model-Agnostic Meta-Learning: MAML
	Meta-learning Problem Set-up
	A Model-Agnostic Meta-Learning Algorithm
	Species of MAML

	On First-order Meta-Learning Algorithms: FMAML
	Meta-Learning with Implicit Gradients: iMAML
	The iMAML algorithm

	Auto-Meta: Automated Gradient Based Meta Learner Search

