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Abstract

Meta learning and few shot learning approaches have shown promising results in
computer vision, with low-resouce tasks. Recently they have gained attention in
natural language processing tasks such as machine translation and text classifica-
tion. In this lecture we cover how meta learning approaches such as MAML and
metric learning approaches such as matching and prototypical networks are used,
combined with episodic training to improve the performance on low resource NLP
tasks.

1 Introduction

Many studies address the low resource problem in NLP by transfer learning or combining multiple
data sources and tasks (multi task learning.) However, the main focus of this lecture is to explain how
few shot and meta learning approaches are adopted for in various natural language processing tasks.
Some methods use metric learning by learning a good similarity metric between input examples;
some other methods adapt a meta-learning framework, and train the model to quickly adapt to new
tasks with gradients on small samples. The lecture is structures as follows: Section 2 describes two
meta learning approaches for sequence modeling. Section 3 explains how prototypical networks
are used for text classification and finally 4 focuses on unsupervised tasks such as word and graph
embeddings.

2 Sequence Labeling

The task of sequence modeling is to assign a label sequence Y = {y1, y2, . . . , yT } to a text sequence
X = {x1, x2, . . . , xT ′}. A special case would be text classification where Y is a single label.

2.1 Neural Machine Translation (NMT)

NMT is one example of sequence modeling which is known to easily over-fit and result in an inferior
performance when the training data is limited. In Gu et al. (2018), the MAML applied to low resource
NMT by viewing language pairs as separate tasks. The underlying idea of MAML is to use a set of
source tasks T1, . . . , Tk to find the initialization of parameters θ0 from which learning a target task
T0 would require only a small number of training examples. In the context of machine translation,
this amounts to using many high-resource language pairs to find good initial parameters and training
a new translation model on a low-resource language starting from the found initial parameters. In
other words:

θ∗ = Learn(T 0; MetaLearn(T 1, . . . , T k))

Given a dataset of tasks (language pairs) DT , we can formulate the language-specific learning process
Learn(DT ; θ0) as:

Learn(Dt; θ
0) = argmaxθLDT (θ) =
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argmaxθ
∑

(X,Y )∈DT

logp(Y |X, θ)− β‖θ − θ0‖2

The first part is a regular NMT objective, and the second part is to force the parameters to be close
to the initialization. The initialization θ0 is found by repeatedly simulating low-resource translation
scenarios using auxiliary, high-resource language pairs. The objective function is defined as:

L(θ) = EkED
Tk ,D′

Tk

 ∑
(X,Y )∈D′

Tk

logp(Y |X; Learn(DTk ; θ))


where k ≈ U({1, . . . ,K}) is one meta-learning episode, DT and D′T are meta-train and meta-test,
drawn from the same distribution. The training process and gradient update is simillar to what
proposed in Finn et al. (2017). They also use first order gradient approximation.

Universal Lexical Representation (URL)

One major challenge here is the space mismatch between input and output languages. So they follow
the approach proposed in . Let say each language has a εkquery = R|Vk|×d where |Vk| is the size of
vocabulary for language k. They define a universal embedding matrix εu and a key matrix εkey both
with size Rm×d and the embedding of token x is defined as:

ε0[x] =

M∑
i=1

αiεu[x], αi ∝ exp{1

t
εkey[i]Aεkquery[x]}

fine tuning on a small corpus which contains a limited set of unique tokens in the target language
could adversely influence the other tokens’ embedding vectors. They thus estimate the change to
each embedding vector induced by language specific learning by a separate parameter ∆εk[x]

εk[x] = ε0[x] + ∆εk[x]

2.2 Meta Multi Task Learning

In Chen et al. (2018), authors propose a new sharing scheme of semantic composition function across
multiple tasks. Their focus however, is not on few shot training but on how to use meta learning as
a parameter sharing method. Their proposed method for multi-task sequence learning combines a
meta-LSTM (as they call it in their paper), shared between different tasks, and a separate LSTM, for
each task.

Basic-LSTM Different from the standard LSTM, the parameter of the basic LSTM is controlled by a
meta vector zt, generated by meta-LSTM gt

ot
it
ft

 =

 tanh
σ
σ
σ

 (W (zt)

[
xt
ht−1

]
+ b(zt))

Considering a matrix for each time step t would make the parameter space very big, so they define a
low-rank matrix factorization for W (zt) and b(zt).

Meta-LSTM The meta-LSTM depends on xt and the previous hidden state ht−1 of the basic-LSTM

 g′t
o′t
i′t
f ′t

 =

 tanh
σ
σ
σ

 (Wm

[
xt
h′t−1
ht−1

]
+ bm)

and zt = Wzh
′
t. Figure 1 shows the architecture of Meta Multi-task Learning.

More precisely, we can describe the update of the units of the Meta-LSTMs as follows:
[h′t, zt] = Meta-LSTM(xt, h

′
t−1, ht−1; θm)

ht = Basic-LSTM(xt, ht−1; zt, θb)
For converting this from a single task learning, to a mult-task learning framework, we can assign a
basic network to each task, while sharing a meta network among tasks.

2



Figure 1: Architecture of Meta Multi-task Learning. The blue modules are shared between different
tasks, which control the parameters of private layers

3 Text Classification

As an example of few shot learning for text classification, we describe how Tan et al. (2019) adapts
prototypical networks with episodic training for Out-of-Domain Detection. Out-of-Domain (OOD)
detection refers to assigning a tag to the input when it doesn’t belong to any of the labels in the
training dataset (In-Domain).

In this paper, they target solving the zero-shot OOD detection problem for a few-shot meta-test
dataset D = (Dtrain, Dtest) by training a transferable prototypical network model from large-scale
independent source datasets T = T1, T2, . . . , TN for dynamic construction of the meta-train set.
Each task Ti contains labeled training examples

General Framework

1. Sample a training task Ti from T and another task Tj from T − Ti.

2. Sample an ID training example xini from Ti and a simulated OOD example xoutj from Tj .

3. Sample N labels from Ti and for the ground truth, sample k training example for each label,
we call it support set Sin = {Sinl }Nl=1

4. An encoder E(.) encodes xini , xoutj and Sinl using a deep network.

5. Build the prototypical vector representation for each label in the support set.

Similar to the training objective is a cross entropy loss defined as:

Lin = −log
logαF (xini , S

in
li

)∑
l′ αF (xini , S

in
l′ )

However, unlike prototypical networks, they want the training examples from OOD to be far from a
prototype and the ID training examples be close to the prototype. So they define two more hinge loss:

Lood = max[0,maxl(F (xoutj , Sinl )−M1)]

Lgt = max[0,M2 − F (xinj , S
in
l ))

and the final loss is defines as:
L = Lin + λLood + βLgt

4 Unsupervised Learning

In this section, we explain how few shot learning is used for Out-Of-Vocabulary word embeddings
(Section 4.1) and predicting unseen relations in knowledge graphs (Section 4.2) .
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4.1 Few-Shot Representation Learning for Out-Of-Vocabulary Words

In Hu et al. (2019) the problem of learning OOV embeddings is formulated as a few-shot regression
problem. Consider a training corpusDT and a pretrained word embedding (e.g. Word2Vec). The goal
is to infer word embeddings for OOV words with just a few examples, demonstrating its usage, on a
new Testing corpus DN . Note that DN could be relatively small and fine-tuning over it could result
in over fitting. The neural regression function F (.) is trained on DT , from which N words {wt}Nt=1
are picked with sufficient number of sentences (St for word wt), and their pretrained embeddings
{Twt

}Nt=1. Each episode is built as follows:

1. Select wt
2. Randomly select K sentences from St, mask out wt from them and build SKt = st,k

K
k=1

3. As well as SKt , the character sequence of wt is also utilized, denoted by Ct

The objective function is defined as:

θ̂ = argmaxθ
∑
wt

∑
SK

t ∼S

cos(Fθ(S
K
t , Ct), Twt

)

While F (.) could be any neural network, in this paper they use self attention networks for context
encoding.

Adaptation with MAML

Applying the learned regression function F (θ) could be problematic when there exists some linguistic
and semantic gaps between DT and DN . They address this issue by using the learned parameter θ as
an initialization and conduct one step gradient update using MAML, at each training episode. More
specifically:

1. At each episode they first conduct gradient descent θ∗ = θ − αOθLDT
(θ)

2. Then use θ∗ as an initialized weight to optimize θ on DN

θ′ = θ − βOθLDN
(θ∗)

4.2 One-Shot Relational Learning For Knowledge Graphs

Knowledge graphs G are represented as a collection of triples {(h, r, t)} ⊂ E×R×E, where E and
R are the entity set and relation set. The authors in Xiong et al. (2018) aim at predicting new facts
under a challenging setting where only one training instance is available. In other words the task is to
predict the tail entity t given the head entity and the query relation: (h, r, ?), given only one training
instance from each relation. The model proposed in this paper is a similarity-based meta-learning
approach. It learns a similarity functionM((s, o), (s0, o0))). So for any query relation r, if there is
one known triple (s0, r, o0), the model can predict the likelihood of a query triple (s, r, o), based on
the matching score between (s0, o0) and (s, o). The model consists of two main part:

Setup.

In this context, each training task corresponds to a KG relations r ∈ R, and has its own training/testing
triples: Tr = Dtrain, Dtest. This task set is often denoted as the meta-training set, Tmeta−train. To
imitate the one-shot prediction at evaluation time, there is only one triple (h0, r, t0) in each Dr

train.
The Dtest = (hi, r, ti, Chi,r) consists of the testing triples of r with ground-truth tail entities ti for
each query (hi, r), and the corresponding tail entity candidates Chi,r = {tij} where each tij is an
entity in G. The metric model can thus be tested on this set by ranking the candidate set Chi,r given
the test query (hi, r) and the labeled triple in Dtrain.

Neighborhood Encoder

For each entity pair, it aggregates the neighborhood information of a node by a neural network as d
dimensional vector. There are two ways to initialize the node and relation embeddings:
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Figure 2: The right Figure is the meta-learning algorithm and the left Figure is the model architecture
for one-shot learning

1. Random initialization
2. Pick a set of relations, make graph G′ and train an existing model to obtain the embeddings,

and use the rest of relations to make meta-train graph.

Matching Network

Proposed in Vinyals et al. (2016). It takes the vector representations of any two entity pairs from the
neighbor encoder; then performs multi-step matching between two entity-pairs and outputs a scalar
as the similarity score. The architecture of the model is shown in the left side in Figure 2

The training process is explained in the right side in Figure 2, The objective function is a triple hinge
loss defined as follow:

lθ = max(0, λ+ score−θ − score
+
θ )
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