
interpretable Model Architectures

Aida Mostafazadeh Davani
mostafaz@usc.edu

1 A general framework for self explaining neural networks

Alvarez-Melis and Jaakkola (2018) propose three desiderata for model explanations in general -
explicitness, faithfulness, and stability - and show that estimating a posteriori explanations for
previously trained models around specific predictions do not satisfy them. Their method is a
generalized form of linear models, f(x) =

∑n
i θixi + θ0. Allowing the θs to depend on input x,

results in more general model, f(x) = θ(x)Tx, where θ is chosen from a complex model class Θ
(can be any type of NN).

In order for the model to be interpretable, the θ for two inputs x and x′, that are close to each other,
should not change dramatically (θ should be tractable). For example, the model can be regularized in
a manner that for all x’s in the neighborhood of x0, ∇xf(x) ≈ θ(x0). The individual values θ(x0)i
act as and are interpretable as coefficients of a linear model with respect to the final prediction, but
adapt dynamically to the input, albeit varying slower than x.

They also introduce interpretable basis concepts and use them instead of words or pixels by defining
a function h(x) : X → Z ⊂ Rk where Z is some space of interpretable atoms. So the generalized
model becomes:

f(x) = θ(x)Th(x) =

k∑
i

θ(x)ih(x)i (1)

A more generalized aggregation can substitute the summatoin in (1) if it is permutation invariant, can
isolate h(x)is and preserve the sign and relative magnitude of the impact of relevance θ(x)is.

Therefore a general definition of the model can be expressed as: let x ∈ X ⊂ Rn and Y ⊂ Rm be
the input and output spaces. We say that f : X → Y is a self-explaining prediction model if it has
the form:

f(x) = g(θ1(x)h1(x), ..., θk(x)hk(x) (2)

In that case, for a given input x, we define the explanation of f(x) to be the set ξf(x) ≡
{(hi(x), θi(x))}ki=1 of basis concepts and their influence scores.

θ(.) (and potentially h(.)) are realized by architectures with large modeling capacity, such as deep
neural networks. When θ(x) is realized with a neural network, we refer to f as a self-explaining neural
network (SENN). If g depends on its arguments in a continuous way, f can be trained end-to-end
with back-propagation.

1.1 Model properties

Properties we wish to impose on θ in order for it to act as coefficients of a linear model on the basis
concepts h(x) are:

1. g is monotone and completely additively separable

2. For every zi := θi(x)hi(x), g satisfies ∂g
∂zi
≥ 0

3. θ is locally difference bounded by h
4. hi(x) is an interpretable representation of x

5. k is small

Definition: f : X ⊂ Rn → Rm is locally difference bounded by h : X ⊂ Rn → Rk if for every x0
there exist δ > 0 and L ∈ R such that ||x− x0|| ≤ δ implies ||f(x)− f(x0)|| ≤ L||h(x)− h(x0)||.
The first two conditions depend entirely on the choice of aggregating function g and the last two are
application-dependent: what and how many basis concepts are adequate should be informed by the
problem and goal at hand.

For the third condition let us consider what f would look like if the θi’s were indeed (constant)
parameters. Looking at f as a function of h(x), i.e. f(x) = g(h(x)), let z = h(x). Using the chain
rule we get∇xf = ∇zf.Jhx , where Jhx denotes the Jacobian of h (with respect to x). At a given point
x0, we want θ(x0) to behave as the derivative of f with respect to the concept vector h(x) around x0,
i.e., we seek θ(x0) ≈ ∇zf . Since this is hard to enforce directly, we can instead plug this ansatz in
∇xf = ∇zf∆Jhx to obtain a proxy condition:

Lθ(f(x)) := ||∇xf(x)− θ(x)>Jhx (x)|| ≈ 0 (3)

All three terms in Lθ(f) can be computed when using differentiable architectures h(.) and θ(.), we
obtain gradients with respect to (3) through automatic differentiation and thus use it as a regularization
term in the optimization objective. With this, we obtain a gradient-regularized objective of the form
Ly(f(x), y) + λLθ(f), where the first term is a classification loss and λ a parameter that trades off
performance against stability and therefore, interpretability of θ(x).

1.2 Interpretable basis concepts

The authors also introduce a reasonable minimal set of desiderata for interpretable concepts is

• Fidelity: the representation of x in terms of concepts should preserve relevant information
(solution: training h as an autoencoder)
• Diversity: inputs should be representable with few non-overlapping concepts (solution:

enforcing diversity through sparsity)
• Grounding: concepts should have an immediate human understandable interpretation (solu-

tion: prototyping (e.g., by providing a small set of training examples that maximally activate
each concept))

Using an autoencoder for h, the reconstruction loss is added to the objective as a penalty:

Ly(f(x), y) + λLθ(f) + ξLh(x, x̂) (4)

2 Attention as interpretation

Attention model (Bahdanau et al., 2014) have been widely used as an insight into how different
features of the input data can have more impact in predicting an output in a task (Chaudhari et al.,
2019). These studies have made use of attention for interpretability because it is believed to directly
represent the internal working of the deep learning architectures.

However, other studies have been questioning this application and tried to test how attention is related
to explanation. Here we analyze tow studies that look into simple attention weights and whether they
can be interpreted as input importance.

Jain and Wallace (2019) compare attention weights with gradient-based measures of importance and
leave-one-out (LOO) methods calculated in several tasks. They also generate adversarial attention
distribution (counterfactual attention weights), α̂, that attend to different inputs but produce essentially
identical predictions to argue that attention weights are not faithful (regarding explainability definition
proposed by Ross et al. (2017)). Such counterfactual distributions imply that explaining the original
prediction by highlighting attended-to tokens is misleading. To calculate the Total Variation Distance
difference between two sets of predictions:

TV D(ŷ1, ŷ2) =
1

2

|Y |∑
i=1

|ŷ1i − ŷ2i| (5)

2

Figure 1: A SENN consists of three components: a concept encoder (green) that transforms the
input into a small set of interpretable basis features; an input-dependent parametrizer (orange) that
generates relevance scores; and an aggregation function that combines to produce a prediction. The
robustness loss on the parametrizer encourages the full model to behave locally as a linear function
on h(x) with parameters θ(x), yielding immediate interpretation of both concepts and relevances.

They use the Jensen-Shannon Divergence (JSD) to quantify the difference between two attention
distributions:

JSD(α1, α2) =
1

2
KL[α1||

α1 + α2

2
] +KL[α2||

α1 + α2

2
] (6)

Three algorithms are suggested to compare attention to feature importance metrics, permuted attention
and the adversarial attention weights.

Their results suggest that while attention modules consistently yield improved performance on NLP
tasks, their ability to provide transparency or meaningful explanations for model predictions is, at

3

best, questionable – especially when a complex encoder is used, which may entangle inputs in the
hidden space.

Wiegreffe and Pinter (2019) evaluate the adversary method for testing attention conducted by Jain
and Wallace (2019), mainly due to the per-instance nature of the demonstration and the fact that
model parameters have not been learned or manipulated directly.

Wiegreffe and Pinter (2019) propose a model-consistent training protocol for finding adversarial
attention distributions through a coherent parameterization, which holds across all training instances.
Given the base model Mb, we train a model Ma whose explicit goal is to provide similar prediction
scores for each instance, while distancing its attention distributions from those of Mb. Formally, we
train the adversarial model using stochastic gradient updates based on the following loss formula
(summed over instances in the minibatch):

L(Ma,Mb)
i = TV D(ŷia, ŷ

b
a)− λKL(αia||αib (7)

We can plot the two terms to evaluates the hypothesis that attention is interpretation based on
comparative variances of each component regarding different λ’a.

3 Rationale based explanation models

3.1 Rationalizing neural predictions (Lei et al., 2016)

Lei et al. (2016) introduce a model that learn to extract pieces of input text as justifications – rationales
– that are tailored to be short and coherent yet sufficient for making the same prediction.

The approach combines two modular components, generator and encoder, which are trained to operate
well together. The generator specifies a distribution over text fragments as candidate rationales and
these are passed through the encoder for prediction.

Target rationales are never provided in the training set The learning task is to minimize a cost function
that favors short, concise rationales while enforcing that the rationales alone suffice for accurate
prediction.

The learning problem can be defined as mapping the input sequence x = {x1, x2, ..xn}, xt ∈ Rd to
a target vector y ∈ [0, 1]m.

we can solve the associated learning problem by estimating a complex parameterized mapping
enc(x) from input sequences to target vectors. We call this mapping an encoder. Squared error for a
prediction ỹ is defined as:

loss(x, y) = ||ỹ − y||22 = ||enc(x)− y||22 (8)

The goal is to select a subset of the input sequence as a rationale 1) the selected words should be
interpretable and 2) they ought to suffice to reach nearly the same prediction. To this end rationale
generator, gen(x), selects words from input sequences to shorter sequences of words. Thus gen(x)
must include only a few words and enc(gen(x)) should result in nearly the same target vector as the

4

original input passed through the encoder or enc(x). the generator is probabilistic and specifies a
distribution over possible selections.

The rationale for a given sequence x can be equivalently defined in terms of binary variables z1, .., zn
where each zt ∈ 0, 1 indicates whether word xt is selected or not:

z ∼ gen(x) ≡ p(z|x) (9)

In a simple generator, the probability that the tth word is selected can be assumed to be conditionally
independent from other selections given the input x.

p(z|x) =

n∏
t=1

p(zt|x) (10)

So p(zt|x) can be produced by bi-LSTM and a fully connected layer with sigmoid activation.

p(zt|x) = σz(W
z[
−→
ht ,
←−
ht] + bz) (11)

In order to implement more conditioned selection:

p(z|x) =

n∏
t=1

p(zt|x, z1, .., zt−1) (12)

Which can also be expressed as a recurrent neural network that uses a second hidden state, st:

p(zt|x, z1,t−1) = σz(W
z[
−→
ht ,
←−
ht ; st−1] + bz) (13)

st = fz([
−→
ht ,
←−
ht ; zt], st−1) (14)

(I think zt should be replaced with zt−1)

They show the rationale {xk|zk = 1} as (z,x); then:

L(z, x, y) = ||enc(z, x)− y||22 (15)

and to have short and consecutive rationales:

Ω(z) = λ1||z||+ λ2
∑
t

|zt − zt−1| (16)

where the first term penalizes the number of selections while the second one discourages transitions
(encourages continuity of selections).

cost(z, x, y) = L(z, x, y) + Ω(z) (17)

min
θe,θg

∑
(x,y)∈D

Ez∼gen(x)[cost(z, x, y)] (18)

where θe and θg denote the set of parameters of the encoder and generator, respectively, and D is the
collection of training instances.

Minimizing the expected cost is challenging since it involves summing over all the possible choices
of rationales z. They use stochastic gradient decent by deriving a sampled approximation to the
gradient of the expected cost objective separately for each input text x. Consider a pair (x, y), for θg:

∂Ez∼gen(x)[cost(z, x, y)]

∂θg
(19)

=
∑
z

cost(z, x, y).
∂p(z|x)

∂θg
(20)

5

multiply by p(z|x)
p(z|x) and then to ∂logp(z|x)

=
∑
z

cost(z, x, y).
∂p(z|x)

∂θg

p(z|x)

p(z|x)
(21)

=
∑
z

cost(z, x, y).
∂logp(z|x)

∂θg
p(z|x) (22)

= Ez∼gen(x)[cost(z, x, y)
∂logp(z|x)

∂θg
] (23)

Same thing can be computed for θe The objective is intractable to compute, the lowerbound, in
particular, requires marginalization of O(2n) binary sequences.

We can simply sample a few rationales z from the generator gen(x) and use the resulting average
gradient in an overall stochastic gradient method. REINFORCE-style algorithm (Williams, 1992)
where the gradient with respect to the parameters is estimated by sampling possible rationales.

Notes: Using RCNN works best. They tried it for multi-aspect Sentiment Analysis and Similar Text
Retrieval on QA Forum

3.2 Interpretable Neural Predictions with Differentiable Binary Variables (Bastings et al.,
2019)

They use the same approach as Lei et al. (2016), but as we mentioned because gradients do not
flow through discrete samples, the rationale extractor is optimized using REINFORCE (Williams,
1992). An L0 regularizer is used to make sure the rationale is short. Bastings et al. (2019) propose an
alternative to purely discrete selectors for which gradient estimation is possible without REINFORCE,
instead relying on a reparameterization of a random variable that exhibits both continuous and discrete
behavior (Louizos et al., 2017), penalizing the objective as a function of the expected proportion of
selected text and also use of Lagrangian relaxation to target a specific rate of selected input text.

They propose to replace Bernoulli variables by rectified continuous random variables that exhibit
both discrete and continuous behaviour. They also employ a relaxed form of L0 regularization (the
first loss that involves the length of the rationale).

The Kumaraswamy distribution (Kumaraswamy, 1980) is a two-parameters distribution over the open
interval (0, 1), we denote a Kumaraswamy distributed variable by K ∼ Kuma(a, b), where a ∈ R>0

and b ∈ R>0 control the distribution’s shape. Figure 2 illustrates the density of Kuma(0.5, 0.5). The
process includes:

1. start from a distribution over the open interval (0, 1) (see dashed curve in Figure 2)
2. stretch its support from l < 0 to r > 1 in order to include {0} and {1}, T ∼ Kuma(a, b, l, r)

(see solid curve in Figure 2)
3. collapse the probability mass over the interval (l, 0] to {0}, and similarly, the probability

mass over the interval [1, r) to {1}, H ∼ HardKuma(a, b, l, r) (shaded areas in Figure 2).

Using this distribution for z values:

z ∼ HardKuma(a, b, l, r) (24)

where shape parameters a, b = g(x, φ) and l, r are fixed hyperparameters.

They use Lagrangian relaxation

max
λ∈R

min
φ,θ
−E(φ, θ) + λ>(R(φ)− r) (25)

where R(φ) is a vector of regularisers, e.g. expected L0 and expected fused lasso (in the original loss
function), and λ is a vector of Lagrangian multipliers λ.

Then in a simple classification task:

ei = emb(xi), h
n
1 = bi− rnn(en1 ;φr), ui ∼ U(0, 1) (26)

6

Figure 2: The HardKuma distribution: we start from a Kuma(0.5, 0.5), and stretch its support to the
interval (-0.1, 1.1), finally we collapse all mass before 0 to {0} and all mass after 1 to {1}.

ai = fa(hi;φa), bi = fb(hi;φb), zi = s(ui; ai, bi, l, r) (27)

The sampled z is then used to modulate inputs to the classifier:

hi = rnn(hi1 , ziei; θh), o = fo(hn, θo) (28)

At test time, the model uses the most likely value for zi, either = 1, = 0 or 0 < zi < 1.

4 Sequence to sequence explanation

In contrast with statistical machine translation (SMT), neural machine translators are not easily
explainable because it is often difficult to extract a comprehensible explanation for the predictions of
these models as information in the network is represented by real-valued vectors or matrices. It is
tempting to interpret encoder-decoder attention matrices (Bahdanau et al., 2014) in neural models as
(soft) alignments, but previous work has found that the attention weights in NMT are often erratic
and differ significantly from traditional word alignments.

In Operation Sequence Neural Machine Translation (OSNMT; Stahlberg et al. (2018)), the neural
seq2seq model learns to produce a sequence of operations by keeping track of the positions of a
source-side read head and a target-side write head. The read head monotonically walks through the
source sentence, whereas the position of the write head can be moved from marker to marker in the
target sentence.

Operations:

• POP SRC: Move the read head right by one token.
• SET MARKER: Insert a marker symbol into the target sentence at the position of the write

head.
• JMP FWD: Move the write head to the nearest marker right of the current head position in

the target sentence.
• JMP BWD: Move the write head to the nearest marker left of the current head position in the

target sentence.
• INSERT(t): Insert a target token t into the target sentence at the position of the write head.

Word alignments can be extracted from the operation sequence in form of 1:n source-target relations.

For training the model the target sequence is not a plain sequence of subword or word tokens but a
sequence of operations. The operation sequence for the target sentences is generated by a statistical
word aligner and removing all alignments that violate the 1:n relation. They use an algorithm to
generate operation sequences based on alignments. The neural model then learns to align and translate
at the same time.

7

Figure 3:

We have found that many of these attention matrices have strong and interpretable links to the
translation process represented by the OSNMT sequence. For example, Figure 3a shows that the first
head in layer 4 follows the source-side read head position very closely: at each SRC POP operation
the attention shifts by one to the next source token. Other attention heads have learned to take other
responsibilities. For instance, head 3 in layer 2 (Figure 3b) attends to the trigram right of the source
head.

References
David Alvarez-Melis and Tommi S Jaakkola. 2018. Towards robust interpretability with self-

explaining neural networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 7786–7795. Curran Associates Inc.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. Interpretable neural predictions with differentiable
binary variables. ACL.

Sneha Chaudhari, Gungor Polatkan, Rohan Ramanath, and Varun Mithal. 2019. An attentive survey
of attention models. arXiv preprint arXiv:1904.02874.

Sarthak Jain and Byron C Wallace. 2019. Attention is not explanation. arXiv preprint
arXiv:1902.10186.

Ponnambalam Kumaraswamy. 1980. A generalized probability density function for double-bounded
random processes. Journal of Hydrology, 46(1-2):79–88.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural predictions. EMNLP.

Christos Louizos, Max Welling, and Diederik P Kingma. 2017. Learning sparse neural networks
through l_0 regularization. arXiv preprint arXiv:1712.01312.

8

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right for the right reasons:
Training differentiable models by constraining their explanations. arXiv preprint arXiv:1703.03717.

Felix Stahlberg, Danielle Saunders, and Bill Byrne. 2018. An operation sequence model for explain-
able neural machine translation. arXiv preprint arXiv:1808.09688.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not explanation. arXiv preprint
arXiv:1908.04626.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

9

	A general framework for self explaining neural networks
	Model properties
	Interpretable basis concepts

	Attention as interpretation
	Rationale based explanation models
	Rationalizing neural predictions lei2016rationalizing
	Interpretable Neural Predictions with Differentiable Binary Variables bastings2019interpretable

	Sequence to sequence explanation

