
Adversarial Examples and Adversarial Training

Jun Yan

University of Southern California
yanjun@usc.edu

October 30, 2019

1 Introduction

Deep Neural Networks play an important role in the rapid development of Artificial Intelligence.
Deep learning models have achieved excellent results in many real world applications. However,
it has been shown that deep learning models can be easily fooled by well-designed input samples,
which casts doubt on their robustness.

In this paper, we mainly follow the chronological order to introduce some important works on
adversarial examples and adversarial training.

2 Adversarial Examples

Adversarial examples are malicious inputs purposely designed to fool a machine learning model.
They are first studied on the image classification task. The goal of these works is to slightly modify
the input image to make it misclassified by the model.

Formally, we denote the classifier mapping image pixel vectors to a discrete label set as f : Rm →
{1 · · · k}, the loss function measuring the gap between predicted label and ground-truth label as
Jθ(xinput, lgt), where θ are model parameters. The original image from the dataset is denoted as
x. An adversarial example x′ is obtained by applying perturbation η on x, i.e., x′ = x+ η. Each
element of x and x′ is in the range of [0, 1]. Let l = f(x).

2.1 L-BFGS Attack

[1] is the first work to evaluate image classification models with generated perturbations on the
input images. Intuitively, if image x is correctly classified, for a small enough radium η > 0, x+ r
satisfying ‖η‖2 ≤ ε should also be correctly classified. They argue that this kind of smoothness
assumption doesn’t naturally hold for deep neural networks, and they develop a method to find such
adversarial examples.

For given x and target label l′ ∈ {1 · · · k} satisfying l′ 6= l, they formulate the attack as a box-
constrained optimization problem:

minimize ‖η‖2
subject to f(x+ η) = l′

x+ η ∈ [0, 1]m

It can be approximated by:

1

minimize c‖η‖2 + Jθ(x+ η, l′)

subject to x+ η ∈ [0, 1]m

L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) method can be used to estimate the
solution. Therefore, this attack method is named as “L-BFGS Attack”. It’s slow but has high success
rate.

They attribute the neural networks’ vulnerability to their nonlinearity. They also find that those adver-
sarial examples generalize across model architectures and training sets. Specifically, an adversarial
example will still be possibly misclassified by networks trained with different hyper-parameters
(number of layers, regularization or initial weights) or on a disjoint training set.

2.2 Fast Gradient Sign Method

[2] goes deeper into the adversarial example problem. They propose a faster method to generate
adversarial examples. Opposed to [1], they argue that the primary cause of neural networks’ vul-
nerability is their linear nature. For examples, ReLUs are designed to behave in a linear way. Even
non-linear functions like sigmoid are tuned to spend most of their time in the non-saturating, which is
approximately linear.

Given the locally linearity, we use a simple example1 to demonstrate their idea. Consider a binary
linear classifier which uses a logistic regression with a zero bias term:

P (y = 1 | x) = σ(wTx) =
1

1 + e−wT x

Suppose a trained model has w = [-1 -1 1 -1 1 -1 1 1 -1 1]T and note that wT (x+ η) = wTx+
wT η. Therefore, given the l -∞ norm budget (the maximum absolute change in a single pixel) of
‖η‖∞ ≤ ε, we can maximize the increase on wTx by assigning η = ε sign(w).

For a input x = [2 -1 3 -2 2 2 1 -4 5 1]T , we set η = 0.5 sign(w) = 0.5w. By adding η to x,
we can improve the class 1 probability from 5% to 88%. Here we have only 10 input dimensions
while an image can usually have thousands of dimensions, which makes adversarial attacks easier
and less perceptible (with much smaller ε).

Based on that, they propose “fast gradient sign method” to generate adversarial examples. The
perturbation can be expressed as:

η = ε sign(∇xJθ(x, l))
Note that this is an untargeted attack because they don’t specify l′. A successful attack is showed in
Figure 1.

Published as a conference paper at ICLR 2015

+ .007× =

x sign(∇xJ(θ,x, y))
x+

εsign(∇xJ(θ,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ε of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let θ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(θ,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained pertubation of

η = εsign (∇xJ(θ,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ε = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ε = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y ∈ {−1, 1} with P (y = 1) = σ
(
w>x+ b

)
where

σ(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y∼pdataζ(−y(w>x+ b))

where ζ(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 1: An adversarial image generated by Fast Gradient Sign Method.

This method is one of the fastest and computationally cheapest to implement, but its success rate is
lower than L-BFGS due to too strong assumption.

1This example is borrowed from slides of Stanford CS231n Lecture 9: Understanding and Visualizing
Convolutional Neural Networks, 2016.

2

As for the generalization of adversarial examples, they give explanations based on neural networks’
linear behavior. They also find that ensembling different models provides only limited help to defend
adversarial examples.

2.3 Adversarial Examples for NLP

Above mentioned perturbation methods for images cannot be directly applied to text data as they are
discrete in nature. There is also a line of work aiming at generating adversarial examples in NLP. We
take [3] as an example. They propose to generate adversarial examples for evaluation on the SQuAD
reading comprehension task. Below is an example of a successful attack. After appending an an
adversarial distracting sentence (shown in bold), the model is fooled.

Article: Super Bowl 50
Paragraph: Peyton Manning became the first quarterback ever to lead two different
teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a
Super Bowl at age 39. The past record was held by John Elway, who led the Broncos
to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice
President of Football Operations and General Manager. Quarterback Jeff Dean
had jersey number 37 in Champ Bowl XXXIV.
Question: What is the name of the quarterback who was 38 in Super Bowl XXXIII?
Original Prediction: John Elway (

√
)

Prediction under adversary: Jeff Dean (×)

They develop a 3-step procedure to construct such distracting sentences, as shown in Figure 2.

Article: Nikola Tesla
Paragraph: "In January 1880, two of Tesla's uncles
put together enough money to help him leave
Gospić for Prague where he was to study.
Unfortunately, he arrived too late to enroll at
Charles-Ferdinand University; he never studied
Greek, a required subject; and he was illiterate in
Czech, another required subject. Tesla did, however,
attend lectures at the university, although, as an
auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: Prague
Model Predicts: Prague

Tadakatsu moved the city of
Chicago to in 1881.

Chicago

What city did Tesla move to
in 1880?

What city did Tadakatsu move to
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into
statement

(Step 4)
Fix errors with
crowdworkers,
verify resulting
sentences with
other crowdworkers

AddSent

spring attention income getting reached

spring attention income other reached

Adversary Adds: tesla move move other george
Model Predicts: george

Repeat many times

Randomly initialize d words:

AddAny

Greedily change one word

(Step 2)
Generate

fake answer

Figure 2: An illustration of the ADDSENT and ADDANY adversaries.

of 26 types, corresponding to NER and POS tags
from Stanford CoreNLP (Manning et al., 2014),
plus a few custom categories (e.g., abbreviations),
and manually associate a fake answer with each
type. Given the original answer to a question, we
compute its type and return the corresponding fake
answer. In our running example, the correct an-
swer was not tagged as a named entity, and has
the POS tag NNP, which corresponds to the fake
answer “Central Park.”

In Step 3, we combine the altered question and
fake answer into declarative form, using a set of
roughly 50 manually-defined rules over CoreNLP
constituency parses. For example, “What ABC di-
vision handles domestic television distribution?”
triggers a rule that converts questions of the
form “what/which NP1 VP1 ?” to “The NP1 of
[Answer] VP1”. After incorporating the alter-
ations and fake answer from the previous steps, we
generate the sentence, “The NBC division of Cen-
tral Park handles foreign television distribution.”

The raw sentences generated by Step 3 can be
ungrammatical or otherwise unnatural due to the
incompleteness of our rules and errors in con-
stituency parsing. Therefore, in Step 4, we fix er-
rors in these sentences via crowdsourcing. Each
sentence is edited independently by five workers
on Amazon Mechanical Turk, resulting in up to

five sentences for each raw sentence. Three addi-
tional crowdworkers then filter out sentences that
are ungrammatical or incompatible, resulting in a
smaller (possibly empty) set of human-approved
sentences. The full ADDSENT adversary runs the
model f as a black box on every human-approved
sentence, and picks the one that makes the model
give the worst answer. If there are no human-
approved sentences, the adversary simply returns
the original example.

A model-independent adversary. ADDSENT

requires a small number of queries to the model
under evaluation. To explore the possibility of an
adversary that is completely model-independent,
we also introduce ADDONESENT, which adds
a random human-approved sentence to the para-
graph. In contrast with prior work in computer
vision (Papernot et al., 2017; Narodytska and
Kasiviswanathan, 2016; Moosavi-Dezfooli et al.,
2017), ADDONESENT does not require any access
to the model or to any training data: it generates
adversarial examples based solely on the intuition
that existing models are overly stable.

3.3.2 ADDANY

For ADDANY, the goal is to choose any sequence
of d words, regardless of grammaticality. We use
local search to adversarially choose a distracting

Figure 2: An illustration of how to generate a distracting sentence.

3 Adversarial Training

3.1 Basic Idea

Adversarial training means training a machine learning models on adversarial examples. This concept
is first proposed in [2], as a method to help the neural networks resist adversarial perturbation.

3

Standard supervised training does not specify that the chosen function be resistant to adversarial
examples, so they add an adversarial objective function based on the fast gradient sign method as a
regularizer:

J̃θ(x, l) = αJθ(x, l) + (1− α)Jθ(x+ ε sign(∇xJθ(x, l)), l)
By setting α = 0.5 to train a maxout network that is also regularized with dropout, they reduce the
error rate on the original test set from 0.94% without adversarial training to 0.84% with adversarial
training. On the test set of adversarial examples, the error rate falls from 89.4% to 17.9%.

It can be concluded that adversarial training can serve both as a regularization strategy and as defense
against an adversary who can supply malicious inputs.

3.2 Virtual Adversarial Training

In Section 3.1, to perform adversarial training, we need the gold label l for datapoint x. In other
words, the gold label determines the “adversarial direction” (to increase the loss with respect to
the gold label). To further adopt adversarial training on unlabeled instances, [4] propose virtual
adversarial training (VAT) as a semi-supervised learning method.

They term the regularization in adversarial training as local distributional smoothness (LDS). For
unlabeled datapoint, the LDS is defined as the KL-divergence based robustness of the model predicted
distribution against local perturbation.

With the hyperparameter ε > 0, they define:

∆KL(η, x) = KL[pθ(· | x) || pθ(· | x+ η)]

ηadv = argmax
η
{∆KL(η, x) | ‖η‖2 ≤ ε}

Then the LDS for datapoint x is calculated as:

LDS(x) = ∆KL(ηadv, x)

Adding the LDS of all observed datapoints to the loss function can thus provide regularization for
both labeled data and unlabeled data. It outperforms nearly all semi-supervised learning methods
when it’s published.

3.3 Adversarial Training for NLP

Both above-mentioned methods (adversarial training and virtual adversarial training) require making
small perturbations to the input vector, which is inappropriate to discrete text input. [5] is the first
work to use adversarial and virtual adversarial training to improve an NLP model.

Published as a conference paper at ICLR 2017

We show that our approach with neural language model unsupervised pretraining as proposed
by Dai & Le (2015) achieves state of the art performance for multiple semi-supervised text clas-
sification tasks, including sentiment classification and topic classification. We emphasize that opti-
mization of only one additional hyperparameter ǫ, the norm constraint limiting the size of the adver-
sarial perturbations, achieved such state of the art performance. These results strongly encourage
the use of our proposed method for other text classification tasks. We believe that text classifica-
tion is an ideal setting for semi-supervised learning because there are abundant unlabeled corpora
for semi-supervised learning algorithms to leverage. This work is the first work we know of to use
adversarial and virtual adversarial training to improve a text or RNN model.

We also analyzed the trained models to qualitatively characterize the effect of adversarial and vir-
tual adversarial training. We found that adversarial and virtual adversarial training improved word
embeddings over the baseline methods.

2 MODEL

We denote a sequence of T words as {w(t)|t = 1, . . . , T }, and a corresponding target as y. To
transform a discrete word input to a continuous vector, we define the word embedding matrix V ∈
R(K+1)×D where K is the number of words in the vocabulary and each row vk corresponds to
the word embedding of the i-th word. Note that the (K + 1)-th word embedding is used as an
embedding of an ‘end of sequence (eos)’ token, veos. As a text classification model, we used a simple
LSTM-based neural network model, shown in Figure 1a. At time step t, the input is the discrete
word w(t), and the corresponding word embedding is v(t). We additionally tried the bidirectional

veos

weos

y

w(2) w(3)

v(3)v(2)

LSTM

w(1)

v(1)

(a) LSTM-based text classification model.

v̄(2) v̄(3) veos
r(2) r(3)

w(2)
w(3) weos

y

LSTM

v̄(1) r(1)

w(1)

(b) The model with perturbed embeddings.

Figure 1: Text classification models with clean embeddings (a) and with perturbed embeddings (b).

LSTM architecture (Graves & Schmidhuber, 2005) since this is used by the current state of the
art method (Johnson & Zhang, 2016b). For constructing the bidirectional LSTM model for text
classification, we add an additional LSTM on the reversed sequence to the unidirectional LSTM
model described in Figure 1. The model then predicts the label on the concatenated LSTM outputs
of both ends of the sequence.

In adversarial and virtual adversarial training, we train the classifier to be robust to perturbations of
the embeddings, shown in Figure 1b. These perturbations are described in detail in Section 3. At
present, it is sufficient to understand that the perturbations are of bounded norm. The model could
trivially learn to make the perturbations insignificant by learning embeddings with very large norm.
To prevent this pathological solution, when we apply adversarial and virtual adversarial training
to the model we defined above, we replace the embeddings vk with normalized embeddings v̄k,
defined as:

v̄k =
vk − E(v)√

Var(v)
where E(v) =

K∑

j=1

fjvj ,Var(v) =

K∑

j=1

fj (vj − E(v))
2
, (1)

where fi is the frequency of the i-th word, calculated within all training examples.

2

Figure 3: Text classification models with clean embeddings (a) and with perturbed embeddings (b).

The main idea is to add perturbation to the input word embeddings, as illustrated in Figure 3.
Different from the input of image classification, we don’t have a limit (e.g. [0, 1]) on the range of
each embedding entry. So to help ε norm constraint take effect, they normalize each embedding vk to
vk:

vk =
vk − E(v)√

Var(v)

4

where E(v) and Var(v) are statistics of all training examples.

After that, they directly adopt adversarial training, virtual adversarial training and their combination
to the text classification model and demonstrate their effectiveness.

Published as a conference paper at ICLR 2017

Table 2: Test performance on the IMDB sentiment classification task. * indicates using pretrained
embeddings of CNN and bidirectional LSTM.

Method Test error rate
Baseline (without embedding normalization) 7.33%

Baseline 7.39%
Random perturbation with labeled examples 7.20%
Random perturbation with labeled and unlabeled examples 6.78%
Adversarial 6.21%
Virtual Adversarial 5.91%
Adversarial + Virtual Adversarial 6.09%

Virtual Adversarial (on bidirectional LSTM) 5.91%
Adversarial + Virtual Adversarial (on bidirectional LSTM) 6.02%

Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
Transductive SVM (Johnson & Zhang, 2015b) 9.99%
NBSVM-bigrams (Wang & Manning, 2012) 8.78%
Paragraph Vectors (Le & Mikolov, 2014) 7.42%
SA-LSTM (Dai & Le, 2015) 7.24%
One-hot bi-LSTM* (Johnson & Zhang, 2016b) 5.94%

Table 3: 10 top nearest neighbors to ‘good’ and ‘bad’ with the word embeddings trained on each
method. We used cosine distance for the metric. ‘Baseline’ means training with embedding dropout
and ‘Random’ means training with random perturbation with labeled examples. ‘Adversarial’ and
‘Virtual Adversarial’ mean adversarial training and virtual adversarial training.

‘good’ ‘bad’

Baseline Random Adversarial Virtual
Adversarial

Baseline Random Adversarial Virtual
Adversarial

1 great great decent decent terrible terrible terrible terrible
2 decent decent great great awful awful awful awful
3 ×bad excellent nice nice horrible horrible horrible horrible
4 excellent nice fine fine ×good ×good poor poor
5 Good Good entertaining entertaining Bad poor BAD BAD
6 fine ×bad interesting interesting BAD BAD stupid stupid
7 nice fine Good Good poor Bad Bad Bad
8 interesting interesting excellent cool stupid stupid laughable laughable
9 solid entertaining solid enjoyable Horrible Horrible lame lame

10 entertaining solid cool excellent horrendous horrendous Horrible Horrible

The much weaker positive word ‘good’ also moved from the 3rd nearest neighbor to the 15th after
virtual adversarial training.

5.2 TEST PERFORMANCE ON ELEC, RCV1 AND ROTTEN TOMATOES DATASET

Table 4 shows the test performance on the Elec and RCV1 datasets. We can see our proposed method
improved test performance on the baseline method and achieved state of the art performance on both
datasets, even though the state of the art method uses a combination of CNN and bidirectional LSTM
models. Our unidirectional LSTM model improves on the state of the art method and our method
with a bidirectional LSTM further improves results on RCV1. The reason why the bidirectional
models have better performance on the RCV1 dataset would be that, on the RCV1 dataset, there are
some very long sentences compared with the other datasets, and the bidirectional model could better
handle such long sentences with the shorter dependencies from the reverse order sentences.

Table 5 shows test performance on the Rotten Tomatoes dataset. Adversarial training was able to
improve over the baseline method, and with both adversarial and virtual adversarial cost, achieved
almost the same performance as the current state of the art method. However the test performance
of only virtual adversarial training was worse than the baseline. We speculate that this is because
the Rotten Tomatoes dataset has very few labeled sentences and the labeled sentences are very short.

7

Figure 4: 10 top nearest neighbors to “good” and “bad” with different training methods. “Random”
means training with random perturbation with labeled examples.

Another interesting finding is shown in Figure 4. With (virtual) adversarial training, words can
be better distinguished by their opposite semantic meanings instead of confused by their similar
grammatical roles.

3.4 Generative Adversarial Network

Generative Adversarial Network (GAN) is another big topic, which is not going to be covered in
this paper. Some people may be confused by its relation with adversarial training. As pointed out
by Ian Goodfellow, GAN training can be regarded as a special case of adversarial training. While
adversarial training refers to training a model on adversarial examples, GAN also involves training a
classifier (discriminator) on adversarial examples (from the generator).

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and

Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572, 2014.
[3] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems. arXiv

preprint arXiv:1707.07328, 2017.
[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional smoothing

with virtual adversarial training. arXiv preprint arXiv:1507.00677, 2015.
[5] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-supervised text

classification. arXiv preprint arXiv:1605.07725, 2016.

Reading Materials
[More1] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv

preprint arXiv:1611.01236, 2016.
[More2] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as

a defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 582–597. IEEE, 2016.

[More3] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei
Chang. Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998, 2018.

[More4] Marco T Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent adversarial rules for
debugging nlp models. In Annual Meeting of the Association for Computational Linguistics (ACL),
2018.

[More5] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples. arXiv
preprint arXiv:1710.11342, 2017.

[More6] Maximin Coavoux, Shashi Narayan, and Shay B Cohen. Privacy-preserving neural representations of
text. arXiv preprint arXiv:1808.09408, 2018.

5

[More7] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. On adversarial examples for character-level neural
machine translation. arXiv preprint arXiv:1806.09030, 2018.

[More8] Yi Wu, David Bamman, and Stuart Russell. Adversarial training for relation extraction. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1778–1783,
2017.

[More9] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses for
deep learning. IEEE transactions on neural networks and learning systems, 2019.

[More10] Wei Emma Zhang, Quan Z Sheng, A Alhazmi, and C Li. Adversarial attacks on deep learning models
in natural language processing: A survey. arXiv preprint arXiv:1901.06796, 2019.

6

	Introduction
	Adversarial Examples
	L-BFGS Attack
	Fast Gradient Sign Method
	Adversarial Examples for NLP

	Adversarial Training
	Basic Idea
	Virtual Adversarial Training
	Adversarial Training for NLP
	Generative Adversarial Network

