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Abstract

Graphs are a fundamental structure to model
relational data including text, images, knowl-
edge bases, etc. Recent research efforts have
shown that graph neural networks are power-
ful for representing graph-structured data as
well as learning deep generative models for
graphs. However, there are few works in gen-
erative models for multi-relational graphs. We
will introduce the possible application scenar-
ios where the multi-relational graph genera-
tion may help, and some ideas about how we
can accomplish the task. In this report, I will
show some preliminary experiment result on
using graph generative models on scene graph
generation tasks and molecular graph genera-
tion.

1 Introduction

As one of the most fundamental data structures,
graphs can capture the relational information well.
There are lots of domains where understanding the
graph structure is crucial to solving the problems,
such as understanding the evolvement of commu-
nities, generating molecular structures for drug
discovery, as well as to discover new information
in the knowledge graph. In this section, we will in-
troduce the scenarios where multi-relational graph
generation will help the most.

1.1 AMR Graph Generation

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism that
encodes the meaning of a sentence as a rooted, di-
rected graph. We can always model AMR graph
as G = (V,E), where V,E denotes the sets of
nodes and edges. V represents the entities in the
sentence while E represents the relation among
different entities. If we can genera AMR graphs,
then we can use the graph to generate text (Song

Figure 1: A generated AMR graph, whose correspond-
ing text is ”A man is riding a horse in a valley.”

Figure 2: Represent a program with graph

et al., 2018), which means we are using the graph-
based methods to generate text from scratch. Here
we give an example of a generated AMR graph to
text.

1.2 Scene Graph and Code Generation

Understanding a visual scene goes beyond recog-
nizing individual objects in isolation. Relation-
ships between objects also constitute rich seman-
tic information about the scene. Xu et al. (2017)
use the iterative message passing to generate scene
graphs. If we can get generated scene graphs
by graph generation techniques, then we can also
get generated images (Johnson et al., 2018), as
we show in Figure 3. Moreover, it also works
for the code generation. We can represent a pro-
gram as graph as shown in Figure 2 (Allamanis
et al., 2018). Representing code as graphs can bet-
ter capture the dependency among variables com-
pared to capturing its shallow textual structure
(Bhoopchand et al., 2016) or parse trees (Bielik



Figure 3: A scene graph and the corresponding image

et al., 2016). If we can generate the corresponding
graphs for different programs, then we can get the
machine-written code, which is a hot topic nowa-
days.

2 Related Work

2.1 Representation Learning on Graphs

Graphs are a fundamental abstraction for model-
ing relational data (Grover et al., 2018). Matrix
factorization, random walk are all used for graph
representation. Recently, researchers have raised
interests on using neural networks to embed the
graph information. The idea behind these repre-
sentation learning approaches is to learn a map-
ping that embeds nodes, or entire (sub)graphs as
points in a low-dimensional vector space (Hamil-
ton et al., 2017). There are lots of graph neural
networks operate over graphs using message pass-
ing.

Kipf and Welling (2016) developed an effi-
cient variant of convolutional neural network with
a layer-wise propagation rule to pass messages.
It encodes the information from both the graph
structure and node features. Authors demonstrate
the efficiency with semi-supervised classification
tasks. There are some other similar works to GCN
(Li et al., 2016; Battaglia et al., 2016).

Veličković et al. (2017) propose graph attention
networks GAT leveraging masked self-attention
layers to address the shortcomings of the previous
graph convolutional neural networks. It provides
more modeling power than its ancestors.

Grover et al. (2018) propose a latent variable
generative model for graphs based on variational
autoencoding (Kingma and Welling, 2013). It uses
graph neural networks for both the inference and
generation.

Li et al. (2018b) propose to use graph neu-
ral networks to express probabilistic dependencies
among a graph’s nodes and edges. It claims that

the networks can learn distributions over any arbi-
trary graph.

Based on the deep understanding of the graph
structure and node information, researchers also
use deep neural networks to generate graphs. You
et al. (2018a) propose GraphRNN to both model
distributions over graphs and sample from these
distributions. It decomposes the graph generation
process into node sequences and edge formation.
Researchers also adopt the idea of GAN (Good-
fellow et al., 2014b) to the graph generation do-
main. NetGAN (Bojchevski et al., 2018a) learns
the distribution by random walks over the graph
and mimic the original input.

2.2 Relation Modeling
Researchers used to create auxiliary triples and
add to the learning objective factorization model
to model the relation (Guu et al., 2015; Garcı́a-
Durán et al., 2015).

Schlichtkrull et al. (2017) introduce R-GCNs,
first showing that GCN frames can be used to
model relational data and proves the efficiency
with link prediction and entity classification tasks.

Knowledge graphs are widely used in lots of do-
mains. Extracting the information among entities
in the knowledge base has recently received con-
siderable attention. In the recommendation field,
Wang et al. (2019) propose KGNN-LS, which
transform the knowledge graph into a user-specific
weighted graph and apply a graph neural network.
The biggest difference of between this work and
other works is that KGNN-LS is designed for het-
erogeneous knowledge graphs, while others are
designed for homogeneous bipartite graphs.

2.3 Text Generation with Graph Neural
Networks

Although lots of current works deal with both the
graph representation, graph generation and rela-
tion modeling, there are fewer works in the natural



language processing domain, which can combine
the relation extraction and graph representation to-
gether.

Researchers have some attempts about extract-
ing the graph structure from the text information.
Abstract Meaning Representation (AMR) graph
generation was one of the popular methods. Bo-
jchevski et al. (2018a) first applies the neural net-
work to parse and generate text using AMR. How-
ever, they model the AMR structure with sequence
encoding instead of operating on the graph struc-
ture, which may lose some information.

The most recent work is GraphWriter (Koncel-
Kedziorski et al., 2019). Instead of using AMR,
authors use a title and a transformed knowledge
graph as input, encodes them respectively and gen-
erates text using GAT (Veličković et al., 2017) as
we mentioned in Section 2.1.

3 Preliminary Methods Exploration

Existing work about graph generation Deep
learning based methods have shown their supe-
riorities for graph generation on preserving both
the structural information and the node informa-
tion. You et al. (2018b) proposed Graph-RNN to
generate graph from sequence with BFS. Li et al.
(2018a) propose DGMG to generate nodes and
edges according to the probability of choosing the
next step. Bojchevski et al. (2018b) propose Net-
GAN to generate entire realistic graphs via ran-
dom walk. It conducts the objective function with
the main adversarial idea from GAN (Goodfel-
low et al., 2014a). Grover et al. (2018) proposes
Graphite, a latent variable generative model for
graphs. Among all the proposed methods, Li et al.
(2018a) is the closet work to ours, since it already
embeds the node information when considering
the graph generation, while other methods only
consider the sequential information of nodes (i.e.,
the position of node in the graph).

Our task and two possible methodologies The
main goal of our task is to generate graph with
both the node information and the edge informa-
tion.

1) Therefore, a simple way to complete our task
would be based on the output of DGMG. The out-
put will consist the node information and the graph
structure information. Therefore, the task can
be transformed as a network representation learn-
ing or knowledge representation learning problem.
We can also think about it as a link prediction

problem, where we need to predict the informa-
tion of the link connecting two nodes. Researchers
have also done lots of work under this topic (Chen
et al., 2018).

The preliminary idea addressing the link predic-
tion task would be using reinforcement learning
based methods. Xiong et al. (2017) use the rein-
forcement learning framework for learning multi-
hop relational paths with a policy-based agent with
continuous states based on knowledge graph em-
beddings. Lin et al. (2018) reduce the impact
of false negative supervision by adopting a pre-
trained one-hop embedding model to estimate the
reward of unobserved facts.

Therefore, we conclude the methods we pro-
pose here as two phases:

• Get the output graph from DGMG, which in-
cludes the embedding of the node informa-
tion, please note that authors of DGMG al-
ready take the graph G as input and its node
representation hv to determine if to add the
node, therefore we do not need to think about
the node information anymore.

• Add the edge information to the generated
graph. This progress can be modeled as a
Markov decision process: given entity pairs
(es, et), we want to find the most informative
link to connect these entity pairs, which can
be solved by reinforcement learning. State
vector at step t is: st = (et, etarget−t) where
et denotes the embedding of the current en-
tity node, and etarget denotes the target em-
bedding of the current node. A simple re-
ward mechanism would be giving 1 if the link
reaches the target, and −1 if it does not.

By doing so, we convert the task from multi-
relational graph generation to graph generation
with node information and link prediction with re-
inforcement learning.

2) The most ideal case would be designing an
end-to-end network structure which can get the de-
sired graph structure in the end, but it is more com-
plicated than the first methods, a possible solution
is what mentioned in the DGMG work. When they
decide if to connect a node with another node,
a function fs maps pair hu (the hidden state for
u) and hv to a score su for connecting u to the
new node v. This can be extended to handle typed
edges by making su a vector of scores same size as
the number of edge types, and taking the softmax



Name Link
Molecular graph ChEMBL dataset https://www.ebi.ac.uk/chembl/
Scene graph T.B.A http://cvgl.stanford.edu/scene-graph/VG/VG-scene-graph.zip
AMR graph The Little Prince https://amr.isi.edu/download.html
Program T.B.A https://www.microsoft.com/en-us/download/details.aspx?id=56844

Table 1: The dataset we may try in different scenarios

over all node and edge types. But specifically how
to do this still needs more exploration.

4 Experiment

As we mentioned in Section 1, there are different
scenarios where multi-relational graph generation
may help. Note that here we focus on the small
graph generation, like AMR graph graph / scene
graph / molecular graph. The number of nodes
should be around 10 for each small graph, rather
than hundreds of nodes like in the case for knowl-
edge graph. Therefore, we collect some datasets
which can be useful for our problem as shown
in Table 1. We did the experiment mainly about
testing how DGMG performs for relational graph
dataset we collected here. Here I will mainly intro-
duce two scenarios that I used for the experiment
and my result, one is for molecular scenario and
the other is for scene graph.

4.1 Molecular Scenario

The dataset we collect for the molecular scenario
is the ENZYMES dataset. ENZYMES is a dataset
of protein tertiary structures obtained from (Fera-
gen et al., 2013) consisting of 600 enzymes from
the BRENDA enzyme database (Neumann et al.,
2016). In this case the task is to correctly assign
each enzyme to one of the 6 EC top-level classes.

We can conclude the statistics information of
the dataset as: about 600 graphs, and there are
about twenty nodes in one graph. For the conve-
nience of our experiment, we reduced the size of
the the dataset to 200 graphs, which we call “en-
zyme small”.

For the presentation of the graph, we have 1)
the adjacency matrix for all graphs which repre-
sent the connectivity of the graph; 2) graph identi-
fiers for all nodes in all graphs; 3) class labels for
all graphs in the dataset, which is six in total in our
experiment settings; 4) node labels.

Our task would be using generative models to
get enzymes which can also fall in these six cate-
gories. The graph generative algorithms we used

Figure 4: Object file in the scene graph dataset



Figure 5: Relationship file in the scene graph dataset

are GraphRNN (You et al., 2018b) and DGMG (Li
et al., 2018a). The metric we used in our experi-
ment is the Maximum Mean Discrepancy (MMD)
of two distributions, here we use the degree dis-
tribution of two graphs. The result is shown in
Table 2.

Suppose that a unit ball in a reproducing ker-
nel Hilbert space (RKHS) H is used as its func-
tion class F , and k is the associated kernel,
the squared MMD between two sets of samples
from distributions p and q can be derived as
MMD2 = Ex,y∼p[k(x, y)] + Ex,y∼q[k(x, y)] −
2Ex∼p,y∼q[k(x, y)].

4.2 Scene Graph Generation Scenario

Scene graphs use the graph structure to model the
content of a picture. Scene graphs are normally
used in the computer vision field, and there
are plenty of scene graph datasets available for
research. For example, there are Visual Genome
dataset (https://visualgenome.org/ ), which is the
most original dataset and also contains the most
noisy data. With the development of the computer
vision field, researchers propose more and more
datasets which eliminate the previous disadvan-
tages of the Visual Genome dataset, such as in
Xu et al. (2017) (http://cvgl.stanford.edu/scene-
graph/VG/VG-scene-graph.zip) as well as the
dataset for the visual question answering task()
(https://cs.stanford.edu/people/dorarad/gqa/vis.html).
Here we use the one proposed in Xu et al. (2017)
for the experiment.

First, let us have a look at what the dataset looks
like. Figure 5 shows the json format of the rela-
tionship between objects in the picture, and their
corresponding predicates. Figure 4 shows the json
format of all objects in one image. We can see
that every object belongs to a synset, which comes
from the WordNet. However, please note that in
our setting, we only need the name of the object,
and there is normally one single name for one en-

tity.
There are 108 graphs in total, which have about

23 nodes in average for one graph. Note that we
may only have 17 unique nodes in one graph. For
relationships in the dataset, we have about 21 rela-
tionships in average for one graph and about seven
unique relationships.

For the simplicity reason, we randomly sampled
200 graphs from all graphs in the dataset. Sim-
ilarly to the previous setting, we have the adja-
cency matrix for all graphs, graph identifier for all
nodes in all graphs and node labels. Please note
that in the previous cases, we did not use the node
attributes. Instead, we just used the node label as
indicator of the node type, and we already had the
information of which label means which class be-
fore the experiment. However, here we need to
utilize the nodes attribute.

The metric we are using for evaluation is still
the MMD (Maximum Mean Discrepancy) for the
degree distribution between two graphs, and the
algorithms we are using are still GraphRNN and
DGMG. We show the result in Table 2.

4.3 Experiment Result Analysis
By just getting the number, we have little idea
about how our result is. Here we get the reported
result table in the GraphRNN paper as shown in
Figure 6. We can see that our result for the molec-
ular dataset basically matches with the reported re-
sult in the GraphRNN paper, but the result for the
scene graph scenario is quite bad compared to the
molecular one.

We can conclude that by using the experiment
we conducted above, deep generative models work
well for the molecular dataset but not for scene
graphs. There are some possible reasons that I
could come up with:

1) there are too many node types for the scene
graph scenario, and the interaction between node
pairs is not too strong, which means for the adja-



Figure 6: The reported result in the GraphRNN paper

cency matrix, it is really sparse that it could not
hardly capture the interaction between different
nodes.

2) for scene graphs, the information on the edge
is quite critical for deciding if to connect two
nodes, while for the molecular dataset, the node
types make up the most important component in
the graph generation process.

5 Rethinking about the problem

After the experiment, we figure out the generative
model did not work well for the scene graph set-
ting. While our original idea was to use the two
step methodology introduced on the method sec-
tion. Then we think the original idea may not work
since we already did not get the satisfying result in
the phase one. Therefore, if we continue our phase
two based on the bad result of phase one, we may
get into trouble.

We then rethink about the problem, we actually
care more about how to get the relationship on the
edges in the graph. It would have been ideal if
we can both take care of the graph generation pro-
cess and generating the edge information. How-
ever, it seems that we could not get the ideal result
during the graph generation process in the multi-
relational graph settings. If we only focus on the
edge type generation, it could be an independent
process apart from the graph generation for the
graph structure.

We can rephrase it the research problem as
Structured prediction for edge tagging in multi-
relational graphs. The input for the problem is
the node information and the graph structure, and
the expected output for this problem would be the
edge information.

We can think about some potential use cases for
this problem itself, such as the recommendation
for Turkers in the crowdsourcing setting, while hu-
mans only need to label the graph structure and the

detailed information for edges in the graph can be
recommended by the system.

There are some potential exploration directions
that we can maybe think of.

• Link Prediction based methods. There
are many multi-relational graph embedding
methods available already, such as TransE,
TransH, DisMult, etc. However, they only
take into account the head information and
tail information, while not caring about the
graph structure. One obvious improvement
that we could maybe do is to take into ac-
count the graph structure, which means im-
prove the method from f(hi, ti)− > ri to
f(hi, ti, G)− > ri, where (h, t) indicates the
head-tail pair, and G here means the Graph
structure.

• Sequence tagging with edge ordering. While
link-prediction based methods only consider
the pair information. The sequence based
methods also consider the result of previous
steps. The first step is to oder the nodes and
edges into a sequence, then we can learn a
tagger for tagging the edges. More specif-
ically, we can see the tagging process as a
markov process, and there are already lost
of work about POS-tagging with BLSTM-
CRF models. We can also make it more
oder-insensitive by taking M permutations
and aggregate the result, the process can
be represented as f([e1, e2, ..., en], G)− >
[y1, y2, ..., yn].

• We can also directly do the graph-level edge
tagging, the function would be f(G)− > Y ,
where Y means the edge information.

The above solutions are some initial ideas about
how we could solve this problem, but more de-



GraphRNN DGMG
Molecular graph 0.0006 0.0023
Scene graph 1.753 3.0053

Table 2: MMD for molecular dataset and scene graph
dataset

tailed and concrete plan still needs more careful
considerations.

6 Conclusion

In this project, I started with the point of wanting
to generate multi-relational graphs from scratch by
using a two-step strategy: 1) generate graph struc-
ture; 2) label edge information in the generated
graph structure. However, the result for the first
step was not promising, and I come up with some
other potential solutions to the second step which
is independent from the first step, which will serve
as the future directions.

I also want to quickly conclude what I got from
the course: although the project does not go well
as I expected, I learned important concepts and
popular methods and algorithms in the NLP field,
which will definitely benefit my future research.
From the project, I also grasped the main idea
and the structure of the most state-of-the-art graph
generative models, which I think will also be ben-
eficial to my potential research.
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and Sebastian Riedel. 2016. Learning python code
suggestion with a sparse pointer network. arXiv
preprint arXiv:1611.08307.

Pavol Bielik, Veselin Raychev, and Martin Vechev.
2016. Phog: probabilistic model for code. In In-
ternational Conference on Machine Learning, pages
2933–2942.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure
Leskovec, Miao Zhao, Wenjie Li, and Zhongyuan
Wang. 2019. Knowledge-aware graph neural net-
works with label smoothness regularization for rec-
ommender systems. In KDD.

Wenhan Xiong, Thien Hoang, and William Yang
Wang. 2017. DeepPath: A reinforcement learning
method for knowledge graph reasoning. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 564–573,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative
message passing. In Computer Vision and Pattern
Recognition (CVPR).

Jiaxuan You, Rex Ying, Xiang Ren, William L.
Hamilton, and Jure Leskovec. 2018a. Graphrnn:
A deep generative model for graphs. ArXiv,
abs/1802.08773.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamil-
ton, and Jure Leskovec. 2018b. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive mod-
els. arXiv preprint arXiv:1802.08773.

https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D17-1060

