
Relational Graph Reasoning for
Knowledge-Augmented Question Answering

Final Report

Jun Yan
University of Southern California

yanjun@usc.edu

Abstract
Pretrained language models have been widely
used in various Natural Language Processing
(NLP) tasks and achieved remarkable success.
However, there are two shortcomings of such
methods: (1) while language models do well
in encoding word sequence based on its se-
mantic meanings, it can’t introduce knowledge
from other sources, which limits its perfor-
mance on knowledge-guided NLP tasks; (2)
language models understand semantics based
on co-occurrence in the training corpus, which
makes it hard to do complex reasoning.

In this paper, we focus on the question an-
swering task where external knowledge is
necessary for both understanding the context
and identifying the correct answer. Inspired
by Relation Network (Santoro et al., 2017),
we propose a framework to incorporate rele-
vant facts from knowledge graph and do rea-
soning. Experiments on CommonsenseQA
dataset demonstrate the effectiveness of our
method and the value of external knowledge.

1 Introduction

When humans use their languages to communi-
cate with each other, they often rely on broad im-
plicit assumptions, such as factual knowledge and
commonsense knowledge. Humans learn and use
this kind of assumptions in everyday life, which
make their language concise without lacking pre-
cision. However, machines by nature don’t have
such background knowledge. Machine learning
models can’t accumulate human’s commonsense
knowledge or domain-specific factual knowledge
through interacting with the environment. There-
fore, empowering Natural Language Processing
(NLP) techniques with knowledge is one of the
major long-term goals for Artificial Intelligence
(AI).

Question Answering (QA) is a Natural Lan-
guage Understanding (NLU) task requiring both

language processing and knowledge reasoning.
While many works focus on how to efficiently
find support evidence from the context, we argue
that external knowledge is also important for an-
swering questions. In this work, we propose a
knowledge-augmented question answering frame-
work that takes an external knowledge graph as
resources. For each question-answer pair, we
first collect helpful evidence from the knowledge
graph. The knowledge is then organized as an ev-
idence graph. After that we learn a network that
can do relational reasoning on the evidence graph
to answer the question.

Specifically, in this work, we choose common-
sense question answering as our task. The main
focus of the commonsense question answering
task is to incorporate commonsense knowledge
and conduct reasoning. We choose Common-
senseQA (Talmor et al., 2018) as the dataset, and
use ConceptNet (Speer et al., 2017) as the knowl-
edge resources. Details will be given in the next
section.

2 Background

In this section, we will introduce the dataset,
knowledge source, and formally present our task.

2.1 CommonsenseQA

We use CommonsenseQA (Talmor et al., 2018) as
our training and testing datasets. It contains 12k
multiple choice questions asking for a target con-
cept from ConceptNet. The statistics are showed
in Table 1.

train dev test
# instances 9,741 1,221 1,140

Table 1: Statistics of CommonsenseQA dataset (official
split).



Note that the ground truth label for the official
split test set is not provided. Therefore, to evalu-
ate our model, we instead use in-house split as in
Lin et al. (2019). Specifically, we split the original
train set into in-house train set and in-house test
set. The statistics are showed in Table 2.

train dev test
# instances 8,500 1,221 1,241

Table 2: Statistics of CommonsenseQA dataset (in-
house split).

2.2 ConceptNet
ConceptNet (Speer et al., 2017) is a multilingual
knowledge graph whose nodes are concepts in the
form of words or phrases and edges are relations
between connected nodes. We use the English part
of ConceptNet 5.60 as our knowledge resources.
When preprocessing the graph data, we:

(1) merge the original 42 relation types into 17
types based on their semantic meanings to relieve
sparsity issue. (e.g. RelatedTo, SimilarTo, Syn-
onym can be merged.)

(2) introduce reverse relations to expand exist-
ing relations (e.g. AtLocation−1 with AtLocation).

The statistics of the preprocessed knowledge
graph is showed in Table 3.

# nodes # edges # type of edges
(concepts) (facts) (relations)

799,273 2,487,810 34

Table 3: Statistics of preprocessed ConceptNet knowl-
edge graph.

2.3 Problem Setup
In the problem of commonsense question answer-
ing, given a question q, the model is asked to select
the correct answer ak from a set of candidate an-
swers {ai}. Here is an example:

A revolving door is convenient for two
direction travel, but it also serves as a
security measure at a what?

A.bank B.library C.department store
D.mall E.new york

Meanwhile, we also have a knowledge graph
G = (V,E) serving as the knowledge source,
where V is the node set and E is the edge set.

Each node is a concept and each directed edge in-
dicates the relation between two nodes that it con-
nects with.

3 Framework Overview

Figure 1 gives the overview of our proposed
framework. We convert the question answering
problem into measuring the plausibility between
the question and each candidate answer. The an-
swer with the highest plausibility score will finally
be chosen. Therefore, the input of our framework
is a question-answer pair, and the output is a plau-
sibility score between 0 and 1.

Given a question-answer pair, our workflow can
be divided into 4 stages: concept grounding, graph
building, triple encoding and attentive pooling.

3.1 Concept Grounding

Given question q and answer a, we use SpaCy1

to perform pattern matching to link each concept
in the word sequence of q to concept cq1, . . . , c

q
l ,

and we map a to concept ca1, . . . , c
a
m, where l

is the number of concepts mentioned in q and
m is the number of concepts mentioned in a.
Note that word overlapping is allowed when do-
ing matching. For example, from “apple tree”
we can extract three concepts: “apple tree”, “ap-
ple” and “tree”. We then have l + m concepts
cq1, . . . , c

q
l , c

a
1, . . . , c

a
m in the question-answer pair

that have been grounded to the knowledge graph.

3.2 Graph Building

After we identify the concepts for a question-
answer pair, we want to retrieve knowledge from
knowledge graphG to help understanding the con-
text. Formally, we want to extract a subgraph from
G with grounded concepts cq1, . . . , c

q
l , c

a
1, . . . , c

a
m

as nodes. We name it as Evidence Graph since
it’s a subgraph about evidence contextualized to a
given question-answer pair.

After we locate the grounded concepts in the
knowledge graph G, we find short paths between
any question concept and answer concept to add
nodes and edges into the evidence graph. We as-
sume that two concepts have informative relations
only when they can be connected within k-hop
relations, where k is a hyperparameter. In other
words, we find paths between any question con-
cept and answer concept with length up to k and
add them to our evidence graph.

1https://spacy.io/
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Figure 1: Overview of Our Framework.

For example, in the question mentioned in Sec-
tion 2.3, we ground two question concepts “re-
volving door”, “security measure” and one answer
concept “bank”. Some short paths between two
question-answer concept pairs are:

• revolving door
AtLocation−−−−−−→ bank

• security measure
Synonym−−−−−→

security system
Synonym−1

−−−−−−→
security

RelatedTo−1

−−−−−−−→ bank

3.3 Triple Encoding
Inspired by the idea of Relation Network (Santoro
et al., 2017), we regard paths between question
and answer concept as basic units in the evidence
graph and assume that the evidence between ques-
tion and answer concept is contained on the edges
of the path. That means, given a question concept
and an answer concept, we only consider multihop
relation between them and neglect the intermedi-
ate nodes. Then, the evidence paths can be con-
verted into evidence triples where the head and tail
concepts remain and the new relation is either a
basic relation (when the path indicates one-hop re-
lation) or a compositional relation (when the path
indicates multi-hop relation).

For example, one-hop evidence path

revolving door
AtLocation−−−−−−→ bank

will be converted into evidence triple

(revolving door,AtLocation,bank).

Three-hop evidence path

security measure
Synonym−−−−−→

security system
Synonym−1

−−−−−−→

security
RelatedTo−1

−−−−−−−→ bank

will be converted into evidence triple

(security measure,

Synonym ◦ Synonym−1 ◦ RelatedTo−1,

bank),

where ◦ denotes relational composition.
After we extract evidence triples from the evi-

dence graph, we want to encode them into triple
embeddings to support further operation. The
triple embedding is obtained by concatenating
head concept embedding, relation embedding, and
tail concept embedding followed by a linear trans-
formation. Head concept embedding and tail
concept embedding shares the same embedding
lookup matrix. Relation embedding is also ob-
tained by looking up in an embedding matrix.
Denote the number of basic (one-hop) relations
as nr, then when we take into consideration up



to k-hop compositional relations, there will be
nr + n2r + . . .+ nkr possible relations.

Formally, for an evidence triple (cq, r, ca), the
triple encoding is calculated as:

t = Linear([cq; r; ca]),

where cq, r, and ca are embeddings of concept
cq, relation r, and concept ca respectively. [·; ·; ·]
means vector concatenation. Linear denotes a lin-
ear transformation with trainable weights.

3.4 Attentive Pooling
The triple encoding stage has converted evidence
from the knowledge graph to a set of triple em-
beddings, each one corresponding to a reason-
ing path between a question concept and an an-
swer concept. We then want to aggregate those
triple embeddings to get the representation for the
graph-based evidence. Specifically, suppose we
have n evidence triples and their embeddings are
t1, t2, . . . , tn. Our motivation is to select paths
that are crucial for question answering while alle-
viating the noise, therefore we want to do attentive
pooling over t1, t2, . . . , tn to get a representation
vector.

To help identify important paths, we need a
global signal from the question-answer pair. To
better capture its semantic meanings, we adopt
pretrained language models (e.g. BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019b)) to en-
code the question-answer pair:

hqa = LM([CLS], q, [SEP ], a, [SEP ])

where LM denotes a pretrained language model,
[CLS] and [SEP ] are special tokens as introduced
in Devlin et al. (2018). [·, ·] means token concate-
nation.

Then we adopt multi-head dot-product attention
mechanism (Vaswani et al., 2017) to select from
t1, t2, . . . , tn attending to hqa and get the graph
the graph representation hgraph:

hgraph = MultiHead({t1, t2, . . . , tn},hqa).

After that, we concatenate hqa and hgraph,
combining information from both the question-
answer pair and the external knowledge graph, and
evaluate the plausible score by feeding the con-
catenated vector into an MLP (multilayer percep-
tron) followed by an activation function.

sqa = σ(MLP([hqa;hgraph])).

We can then do supervised learning with the
predicted plausible score sqa and the gold label
lqa using binary cross-entropy loss loss, where
lqa = 1 indicating that a is the correct answer to q
and lqa = 0 otherwise:

loss = −lqa log(sqa)− (1− lqa) log(1− sqa).

4 Experiments

4.1 Experiment Setup

Pretrained Embedding. We pretrain Trans-E
(Bordes et al., 2013) embeddings on ConceptNet
to get pretrained concept embedding and basic re-
lation embedding. For higher-order relation, we
set their embedding as the summation of basic re-
lation embeddings. All concept embeddings and
relation embeddings are finetuned during training.
Hop Threshold k. Threshold k controls how
many paths do we want to incorporate in reason-
ing. It also reflects our judgement on the rela-
tionship between path length and noise. We test
k = 2 and k = 3 in our experiments. Note that
we need to set a hop threshold to collect relational
paths instead of always finding the shortest paths.
Because finding shortest paths calls for an algo-
rithm to run on the global graph structure in time
O(|E|+ |V | log |V |) (Dijkstra’s algorithm) where
both |E| and |V | are huge numbers for a knowl-
edge graph. On the contrary, when we set the
hop threshold k, we can only rely on local struc-
ture (extend to k-hop neighbors of a given node),
which makes path finding computational feasible.
Statement Encoding. We test our proposed
framework with three representative pretrained
language models: BERT-BASE, BERT-LARGE
(Devlin et al., 2018), and ROBERTA-LARGE
(Liu et al., 2019b). We build these text encoder
based on Huggingface’s transformers library.2

Optimization. We use RAdam optimizer (Liu
et al., 2019a). For text encoders, we set the learn-
ing rate to 3 × 10−5 for BERT-BASE, 2 × 10−5

for BERT-LARGE, and 1× 10−5 for ROBERTA-
LARGE. For graph encoders, we set the learning
rate to 3 × 10−4 for our proposed method and
1× 10−3 for RGCN.

4.2 Compared Methods

LM Finetuning. Pretrained language models can
be directly adopted to the question answering task

2https://github.com/huggingface/transformers



in a knowledge-agnostic way. Specially, we fine-
tune a binary classifier on top of the pretrained
language model encoder to calculate the plausible
score.
Relational Graph Convolutional Network
(RGCN). Traditional Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016) leverage
both node features and local graph structures to
do message passing and learn hidden represen-
tation of the graph. Schlichtkrull et al. (2018)
propose relational graph convolutional networks
(R-GCNs) to model relational graph data. It
assigns different weight matrices to edges of
different relational types and can only deal with
a closed set of relations. RGCN can be applied
to encode the evidence graph, thus serving as the
baseline of the graph encoding part of our method.
Knowledge-Aware Graph Network (KagNet).
KagNet (Lin et al., 2019) can be regarded as an
extension of RGCN. It uses LSTM to encode evi-
dence paths and adopts both concept pair level at-
tention and path level attention. It achieved state-
of-the-art results on CommonsenQA dataset when
it’s submitted.

4.3 Experimental Results
We compare our model with baseline models as
described in Section 4.2 on CommonsenseQA
dataset. We use the in-house split as in Lin et al.
(2019). We run all models only once except that
we directly use the results reported in Lin et al.
(2019) for KagNet. The results are presented in
Table 4. We can observe that:

• Our model (k = 2) consistently outper-
forms other models when using BERT-Base
and BERT-Large as the text encoder, which
demonstrates the effectiveness of our model.

• The improvement brought by using exter-
nal knowledge becomes marginal when we
switch to more powerful pretrained language
models. Our hypothesis is that when we have
more training corpus, current language mod-
els have the capacity of memorizing the infor-
mation contained in the corpus. In this case,
graph knowledge is no longer needed. There-
fore, incorporating graph knowledge doesn’t
necessarily show improvement.

• With BERT-BASE and BERT-LARGE, for
our model, k = 2 consistently performs bet-
ter that k = 3. That may be due to paths with

lengths longer than 2 are mostly noisy, which
means these paths indicate only weak rela-
tions between concepts of interests. There-
fore, incorporating them in the reasoning pro-
cess hinder the attention mechanism from se-
lecting the most valuable reasoning paths and
leads to performance drop.

• When using RoBERTa-Large as the text en-
coder, the performance of our model with
k = 2 significantly drops compared to other
models. That may be due to randomness in
the training process that makes training stop
too early.

4.4 Study: High-Order Relation Embedding

Since we use a heuristic way to initialize the em-
bedding for high-order relation embedding, we
also want to see if the underlying assumption
makes sense for compositional relations. That is,
should the embedding of high-order relation be
always the same as the summation of the cor-
responding basic relation embeddings. To test
this, we introduce another design “-Tying”, which
means tying the embedding of high-order relation
to be the sum of basic relation embedding through-
out the training process instead of just for initial-
ization.

Results are showed in Table 5. It can be seen
that adding the tying constraint leads to perfor-
mance degradation. That implies that multi-hop
relations cannot be simply modeled as the compo-
sition of basic relations. They’re likely to carry on
extra information. As the training goes, the Trans-
E assumption may not hold and we should assign
an independent embedding for each high-order re-
lation.

5 Related Work

Knowledge Extraction. There are two main
sources to extract related knowledge from: plain
text and knowledge graph. Chen et al. (2017)
propose DrQA which consists of a document re-
triever and a document reader to locate and incor-
porate helpful knowledge in the Wikipedia. Many
knowledge-augmented works (Bauer et al., 2018;
Lin et al., 2019) directly use a knowledge graph in
the related domain. Lv et al. (2019) extract helpful
knowledge from both ConceptNet and Wikipedia.
While text data like Wikipeida has high coverage,
structured data like knowledge graph can provide



Methods BERT-Base BERT-Large RoBERTa-Large

Dev (%) Test (%) Dev (%) Test (%) Dev (%) Test (%)

LM Finetuning 48.81 46.49 62.41 57.21 73.32 69.62

RGCN 56.84 54.71 62.74 56.41 72.40 68.09
KagNet† 55.57 56.19 62.35 57.16 - -

Ours (k = 2) 58.80 57.61 64.21 60.11 24.90 23.85
Ours (k = 3) 56.84 53.99 62.00 55.84 73.79 68.73

Table 4: Performance comparison of our models and baseline models on CommonsenseQA dataset. We
report accuracy on the in-house dev set and in-house test set as in Lin et al. (2019) on CommonsenseQA. Each
model is run once. † indicates reported results.

Methods BERT-Base BERT-Large

Dev (%) Test (%) Dev (%) Test (%)

Ours (k = 2) 58.80 57.61 64.21 60.11
Ours-Tying (k = 2) 58.97 57.05 63.88 58.90

Table 5: Performance comparison of whether to use tying for high-order relation embeddings.

relation information which is necessary for knowl-
edge reasoning. In this paper, we focus on lever-
aging structured knowledge.

Given the knowledge source and input, the
next step is to extract related knowledge. This
task is called concept grounding or entity linking.
Knowledge-augmented QA papers usually use off-
the-shelf tools (e.g. entity linker) or develop sim-
ple string matching rules to identify matched en-
tities/concepts on the knowledge graph. After lo-
cating these “root” nodes, an extractive way to get
the evidence graph is to construct a subgraph cov-
ering all “root” nodes. However, finding the min-
imal spanning subgraph is a NP-complete prob-
lem. Therefore, researchers develop heuristics (Lv
et al., 2019; Lin et al., 2019) for graph construction
or formulate the path finding problem as an opti-
mization problem which can be efficiently solved.
In this paper, we adopt simple path finding strat-
egy that only finds paths within k-hops.
Graph Reasoning. After we have an evidence
graph, the next step is to reason over it. Many
Graph Neural Network (GNN) variants (Wu et al.,
2019; Zhou et al., 2018) can be adopted for reason-
ing. Marcheggiani and Titov (2017); Zhang et al.
(2018) find that Relational-GCN (Schlichtkrull
et al., 2018) tends to over-parameterize the model.
(Lv et al., 2019; Lin et al., 2019) both use GCNs
on the undirected graph while Lin et al. (2019)
propose an additional LSTM-based path encoder.

The lesson here is that we should not only use
symbolic knowledge from the graph, but also
leverage semantic clues from the input sequence.
Xiao et al. (2019) propose Dynamically Fused
Graph Network to deal with constructed graph. It
shows that entity-level reasoning and token-level
contexts are both important for question answer-
ing. For these graph neural networks, the attention
mechanism is usually helpful for feature aggrega-
tion as well as interpreting the results and debug-
ging. In this paper, we develop our framework
from Relation Network (Santoro et al., 2017),
which is more efficient when tackling small rela-
tional graphs since message passing is not needed.

6 Conclusion

In this paper, we propose a novel framework for
incorporating relevant knowledge from external
knowledge graph to help knowledge-guided ques-
tion answering. The workflow can be divided into
four stages: concept grounding, graph building,
triple encoding, and attentive pooling. Our frame-
work consistently outperform other baseline mod-
els when using BERT as the text encoder.
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