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Abstract

Deciding which scripts to turn into movies is
a costly and time-consuming process for film-
makers. Thus, script selection as the initial
phase in movie production, building a tool to
aid the process can be very beneficial. In this
work, we present a method to evaluate the qual-
ity of a screenplay solely based on linguis-
tic cues. We address this in a two-fold ap-
proach: (1) we define the task as predicting
nominations of scripts at major film awards
since we hypothesize that the peer-recognized
scripts should have a greater chance to succeed.
(2) based on industry opinions and narratology,
we extract and integrate domain-specific fea-
tures into common classification techniques.
We face two problems (1) scripts are way
longer than other document datasets (2) nom-
inated scripts are limited and thus hard to col-
lect. However, with narratology-inspired mod-
eling and domain features, our approach sees
clear improvements over strong baselines. Our
work provides a new approach for future work
in screenplay analysis.

1 Introduction

The motion picture industry is a multi-billion dollar
business worldwide (Lash and Zhao, 2016). Deci-
sions in selecting movies to be produced are critical
to the profitability of a movie studio. However, the
selection of the screenplay, happening at the initial
phase, which has a large influence on the financial
budget and quality of the final movie production,
has a large subjective element.

A typical script review service costs a studio
$80 to $150 to receive a report containing a short
summary of the script and opinion as to its quality
(Follows et al., 2019). Considering the amount of
scripts a studio needs to filter through, it can be
overwhelming.

Thus, Consider this scenario, if a tool can facilate
the script review process and provide the chance

of success, wouldn’t this make an impact and cut
down lots of budgeting decisions in the production
process? An objective and reliable tool to help
evaluate and narrow down the candidate scripts
is of vital importance to aid the “green-lighting”
(deciding which scripts to turn into movies) process.
This work is not about measuring the art of rating
how a good story is; it is about deciphering critical
readers. We want to provide a tool that says “this
is what picky reviewers may look for in a script”.

The main idea of this work is to develop such
a tool which gather custom analyses from various
aspects, e.g., screenplay writing theory, character-
focused linguistic behavior, to help assess the qual-
ity of the script.

In general, movie script writing can follow a
well-defined Three Act structure (Field, 2007; Mc-
Kee, 1997). Also, Weiland (Weiland, 2013, 2018)
specifies a more fine-grained storytelling plan, start-
ing from hook, inciting event, 1st plot point, 1st
pinch point, midpoint, 2nd pinch point, 3rd plot
point, climax to resolution, where we call Struc-
tural Points (SP). We believe knowledge like the
above in strucuring a screenplay can bring benefits
in selecting the most relevant textual properties for
the prediction of script quality.

Aside from the event positioning, Follows et al.
(2019) reported that how writers develop characters
and events, i.e., Characterization and Plot, are two
main foci of industry reviewers. We thus devise
our domain specific features in these two aspects.
We hope to offer an enhanced understanding of the
essential elements in high-quality movie scripts.

To perform quality assessment, based on an as-
sumption that the nominated scripts are recognized
writings and thus should have had higher chance
of passing green-lighting, we propose to perform
an evaluation in a two-fold approach. First, we
use award-nomination prediction as a proxy to the
green-lighting process. Second, we examine our



domain features and models by integrating them
into existing document classification methods.

We admit the constraints of our metric in that
the number of award venues has its limits, and not
necessarily those without nomination would be any
worse than the nominated. But due to the difficulty
in collecting unproduced scripts with peer reviews,
we adopt our current approach.

Our main contributions are:

• We defined a quality metric for screen-
plays and collected ground truths from peer-
reviewed venues.

• Based on structural knowledge of screen-
play narratology, we developed a simple
narratology-inspired model for our task.

• Motivated by industry opinions and narratol-
ogy, we devised domain-specific features to
achieve our objective.

• We tested that for long document classifi-
cation, a simple feature-based approach can
work better than state-of-the-art models.

2 Related Works

Literary works-related research has gained interest
in recent years. Bamman et al. (2013, 2014) has
succeeded to learn latent character types in film
and novels; Iyyer et al. (2016); Chaturvedi et al.
(2016); Elson et al. (2010) try to model character
relations in novels. Papalampidi et al. (2019) ana-
lyze narrative structure of movies by using turning
points, and Chambers and Jurafsky (2008); Sims
et al. (2019) seek to detect events in narratives.

Also, there has been Gorinski and Lapata (2015)
trying to summarize movie script with graph-based
approach and automatically generate movie precis
containing story, genre, and others (Gorinski and
Lapata, 2018).

The only attempt in measuring quality of liter-
ary works we know of is made by Kao and Ju-
rafsky (2012), who quantitatively analyze various
indicators for discerning professional poems from
amateurs’. However, in script writing, the cine-
matic success criteria lack evaluative consensus
(Simonton, 2009) — previous works on evalua-
tion of movies have largely focused on forecasting
revenue or profit of movies using production, dis-
tribution, and advertising data (Ghiassi et al., 2015;
Lash et al., 2015) or basic textual and human anno-
tated features (Eliashberg et al., 2014).

The main differences between our work and pre-
vious works are: (1) our approach aims to process
automatically without human annotated features.
(2) our metric and method are geared towards eval-
uation that base soley on textual properties.

3 Data and Problem Setting

In this section, we introduce datasets we evaluate
on, how we collect ground truths for out task, and
the explain the difficulties we face.

3.1 Data collection

We evaluated our method using ScriptBase (Gorin-
ski and Lapata, 2018) and Movie Screenplay Cor-
pus (MSC) Ramakrishna et al. (2017) datasets.
ScriptBase provides 917 scripts and MSC contains
945 Hollywood movies. We kept 897 and 868 suit-
able ones which have enough character utterances
for our approach from each dataset respectively.
Similar to Underwood (2019), which analyze high-
prestige novels as works that have been reviewed
by top journals, we collected the screenplays that
have histories of nominations as quality “ground
truth”. The venues we collect from are well-known
professional prizes, which include “Writers Guild
of America Award”, “Academy Awards”, “Golden
Globe Awards”, and “British Academy of Film
and Television Arts Awards”. Since we focus on
textual properties for success, we only gleaned
nominations in the original screenplay and adapted
screenplay categories. At the end, we obtained 212
(23.6%) movies out of ScriptBase and 113 (13.0%)
from MSC as quality “ground truth” labels.

3.2 Problem Setup

Our work focuses on measuring quality as whether
or not a movie would be nominated at a peer-
reviewed venue. The basic assumption for using
this approach as success metrics is simple — a
screenplay that receives nominations by critical re-
viewers should have had higher chance of getting
through green-lighting.

3.3 Challenges

In nature, a movie should be tough to be cleanly
categorized, due to its length, complex storyline
and turns, and the lack of evaluative criteria. Prior
works in document classification (Yang et al., 2016;
Liu et al., 2017; Adhikari et al., 2019; Johnson and
Zhang, 2015) evaluated on datasets with small doc-
ument size (Reuters, IMDB, Yelp, etc.). However,



Dataset documents average #w %pos

Reuters 10,789 144.3 -
IMDB 135,669 393.8 -
Yelp 2014 1,125,457 148.8 -

ScriptBase 897 27,539.7 23.6
MSC 868 27,067.4 13.0

Table 1: Dataset statistics and comparisons of
datasets. #w denotes the number of words and %pos
denotes the percentage of positive class.

our document size on average is at least 65 times
longer, which may be hard for NN-based models
to train due to long sequences and the computa-
tional burden. Besides, the number of training data
we have is at most 1000 times smaller than other
datasets. With our datasets being long, small and
skewed, state-of-the-art techniques may not work
well. Summary of the comparisons is shown in
Table 1.

4 Analysis of Domain Features

In this section, we introduce our domain features
that are divised to achieve our goal and provide
analysis based on our problem setup.

Characterization and Plot are major aspects of
focus in the industry; inspired by which, we de-
vised 6 novel features. For each, we provided in-
tuitive motivations, and then detailed how we con-
verted them computationally. We chose the top two
most speaking characters of each movie to analyze
for characterization.

According to Weiland (2018), a script can place
9 SPs roughly equally distributed, creating eight
equal-lengthed development segments (DS) in be-
tween. We hypothesized that such structural hints
should help to achieve our objective. Based on the
statistics of both datasets, to leverage the SPs, we
collected a context window of 1% (∼270 words)
centered at SPs for all scripts.

4.1 Characterization

By the definition of characterization, we hypoth-
esized that by measuring pattern change of char-
acters, we may see how writers develop the char-
acters’ personality. We sought pattern change via
two kinds of changes writers would make between
SPs - linguistic (speaking pattern) change and emo-
tional change. To do this, we proposed Linguistic
& Emotional Activity Curve.

Linguistic & Emotional Activity Curve (ling,
emo). For linguistic change, we extracted the de-
pendency trees of characters; for emotional change
we used normalized Empath (Fast et al., 2016) to
get characters’ emotion status. We extracted the
linguistic distribution and Empath distribution of
sentences in each development segment. We then
applied activity curve (Dawadi et al., 2016), which
uses a Permutation-based Change Detection in Ac-
tivity Routine (PCAR) algorithm to calculate the
change between two DSs of distributions.

Type-token ratio (tt). As Kao and Jurafsky (2012)
show, in poetry, the type-token ratio related most
positively to the quality of a poem. We believed
this concept should work similarly on character
analysis, and can show how much effort writers put
in in characterization. We defined this feature as
the number of unique words used by a character
divided by the total number of words.

4.2 Plot
Moreover, we supposed a series of well-written
dramatic events, i.e., Plot, should have emotional
effect to readers and thus writers may use their
lexica to achieve that. Therefore, we examined this
hypothesis by leveraging two sentiment analysis
lexicons to compute the emotional strength of SPs.

Valence-Arousal-Dominance (VAD). Moham-
mad (2018a) performed extensive study in getting
an objective score for words in VAD dimensional
space (Russell, 1980, 2003). We calculated average
scores over the context window of each SP.

Emotion Intensity (int). Similar to VAD, we used
the NRC Affect Intensity Lexicon (Mohammad,
2018b) over the SPs to score emotion intensity
along four basic emotion classes (Plutchik, 1980).

Also, since events are usually adressed in units of
scenes, we wanted to get a picture of how many dif-
ferent emotionally similar scenes across the dataset
appear in a movie.

Empath Clustering (clus). We used Empath to
extract lexical categories for each uttrance. We
then clustered the lexical category distributions of
all utterances with deep embedded clustering (Xie
et al., 2016). We obtained the cluster distribution
based on the lexical categories within a movie as a
feature representation.

We visualized partial features in a “nomination
v non-nomination” fashion to show the potential
of our features. For some we can easily observe
clear differences from one to the other, while some



are more subtle. For instance, in VAD, arousal of
MICA is ambiguous between the two, and yet we
can easily discern nominated scripts along the same
axis for ScirptBase.

5 Details of Activity Curve

In Sec. 4, we briefly introduce the concept of Ac-
tivity Curve, but since later shown in Sec.8, this
contributes consistent improvements to our task,
we detail the procedure of getting this feature.

5.1 Definition

Linguistic interval represents a fixed portion of
utterances. Particularly, we define a linguistic in-
terval Wx,y where x and y are the start and end
proportion in a character’s utterance set. For in-
stance, W0,10 indicates the first 10% utterances
of a character. In this study, we segment a charac-
ter’s full dialog into equal-size windows, and each
window is regarded as a time interval. Particularly,
each of these segments has of 20% utterances of
a character, and consecutive liguistic intervals are
with an overlap of 10%.

Linguistic distribution is used to model linguis-
tic information within a linguistic interval. As
mentioned above, two linguistic distributions are
made available in this analysis: utterance emotion
disctribution and lexical disctribution. Distribu-
tion of seven basic emotions of each utterance is
computed by using the Empath library (Fast et al.,
2016). These seven basic emotions are anger, sad-
ness, joy, surprise, love, fear, and disgust. The
lexical distribution of each utterance is calculated
from the lexical labels provided from (Gorinski
and Lapata, 2018). We use the utterance emo-
tion disctribution as the example in the follow-
ing explanation. For each linguistic interval, we
average the utterance emotion distribution from
all utterances to generate the utterance emotion
distribution for the linguistic interval. We define
Dj = {dj,1, dj,2, ..., dj,e, ...dj,7} as the utterance
emotion distribution for the j-th time interval for a
character given the unique emotion set described
above.

5.2 Distance Measure Between Linguistic
Distributions

To calculate the distance between two linguistic
distributions, we used the Kullback-Leibler (KL)
divergence measure. For instance, we have two
text emotion distributions at the j-th linguistic

interval and at the (j + 1)-th linguistic interval:
Dj = {d1,j,1, dj,2, ..., dj,e, ...dj,7} and Dj+1 =
{dj+1,1, dj+1,2, ..., dj+1,e, ..., dj+1,7}. The KL di-
vergence between these two distributions is defined
as follows:

Distj = 1
2 × (DKL(Dj||Dj+1) +

DKL(Dj+1||Dj))

= 1
2 ×

∑7
k=1(dj,k

dj,k
dj+1,k

+ dj+1,k
dj+1,k

dj,k
)

5.3 Consistency Model
We apply a Permutation-based Change Detection
in Activity Routine (PCAR) algorithm proposed by
(Dawadi et al., 2016) to calculate the change be-
tween two linguistic intervals. We apply PCAR to
detect changes in linguistic based on a two-sample
permutation test. The permutation-based technique
first provides a data-driven approach to calculate an
empirical distribution of a test statistic. The empir-
ical distribution of a test statistic is then obtained
by calculating the test statistic after randomly shuf-
fling (rearranging) the data a specified number of
times. For instance, to compare the change be-
tween W0,20 and W10,30, we have the following
steps:

1. Calculate the baseline statistic: We calcu-
late the baseline statistic as the KL diver-
gence between two aggregated linguistic dis-
tributions in the original window W0,20 and
W10,30 without permutation. We denote base-
line statistic between j-th and (j + 1)-th lin-
guistic interval as Distj .

2. Calculate the empirical test statistic distri-
bution: First, we randomly permute record-
ings between W0,20 and W10,30. Then, we
calculate the empirical distributions of the test
statistic (KL divergence) by comparing the in-
dividual linguistic distribution within the two
shuffled windows. We perform the shuffle
for S times, and we define the test statistic
generated from each shuffle between j-th and
(j + 1)-th linguistic interval as Distj,s.

3. Significance testing: To quantify the change
of the linguistic information between two in-
tervals, we quantify the significance in chang-
ing based on the number of times the test
statistic from the permuted sample is equal to
or greater than the baseline statistic. In other
words, the change significance between j-th
and (j + 1)-th linguistic interval is computed
as sigj =

∑S
s=1 1(Distj >= Distj,s)/S.



(a) ScriptBase

(b) MSC

Figure 1: VAD.

6 Predictive Modeling

In this section, we define our prediction task, and
then propose our base model as and then move on
to a paradigm which integrates domain features
proposed in previous section. Also, with a similar
background as our base model, we developed a
simple end-to-end NN-based model.

6.1 Task Formulation

As a proxy to the original quality assessment task,
we define a binary classification task as to predict-
ing the nomination of a script.

6.2 Narratology-inspired Model.

Inspired by narratology and Manevitz and Yousef
(2001), we propose Tfidf-SVMnarr (Fig.2)— in-
stead of using all texts in an entire document, we
extract words in context window of SPs for each
document, compute the tf-idf representations, and
feed them into a SVM classifier. Due to the huge
amount of unique tokens, we chose only the top
500 important features to represent a document.
We test the results without choosing 500 features
and our setting is better.

Figure 2: Narratology-inspired Model.

6.3 Deep Neural Prediction Model

Similar to Tfidf-SVMnarr, for each SP, we utilize a
Bi-GRU over the corresponding context window,
creating a hidden representation for that SP and
concatenate all 9 hidden representations together.
After that we use a fully connected layer for predic-
tion. We call this BiGRUnarr. The idea is shown
in Fig.3.



Figure 3: Deep Neural Prediction Model.

6.4 Feature-based Prediction

To examine the predictive power of proposed fea-
tures, on top of Tfidf-SVMnarr, we add domain
features along with tf-idf to SVM; for BiGRUnarr,
we concatenate domain features with the 9 hidden
representations before fully connected layer to see
the efficacy of domain features.

7 Experimental Setups

7.1 Dataset usage

We performed random sampling on both datasets
such that 80% is used for training, 10% for valida-
tion, and 10% for test.

7.2 Baselines

We adopted HAN (Yang et al., 2016), BERTbase,
BERTlarge (Devlin et al., 2019) as our baselines.
Since a script is subdivided into scenes, our HAN
implementation, HANscence, uses scence as the
second hierarchy instead of sentence.

7.3 Implementation details

We use Scikit-learn 0.21.3 to implement feature-
based models, and PyTorch 1.3.1 for deep neural
models. Also, we use gensim 3.8.1 for pre-trained
Word2Vec embeddings for HAN, and Hugginface
(Wolf et al., 2019) for BERT. Since the binary la-
bels in both datasets are imbalanced, we weight the
positive class by inverse frequency of class labels
in the training set.

7.4 Hyper-parameters

To ensure a fair comparison, we tuned the hyper-
parameters for all models. On feature-based mod-
els, we performed grid search. For NN models, we
use embedding size 100 and Adam optimizer with
0.001 learning rate.

Method / Dataset ScriptBase MSC

HANscene 45.12 45.62
BERTbase 42.67 46.29
BERTlarge 42.67 46.29
Tfidf-SVM 47.01 59.21

TFIDF-SVMnarr 57.43 59.21
+ emo + VAD 56.52 55.29
+ ling + emo + tt 62.35 62.73
+ int + ling + emo + clus 60.87 64.79

BiGRUnarr 52.92 42.40
+ ling + emo + clus + tt 57.47 54.46

Table 2: F1 scores (%) of model predictions. See
Sec 4 for definitions of abbreviations.

8 Results and Discussion

We report the macro-averaged F1 scores of each
model in Table 2.

8.1 NN v SVM

Interestingly, from Table 2 we see that NN-based
document classification methods are no better
than our proposed simple SVM narratology-based
model. We suppose the length of document could
be the main reason, RNNs may not handle “super
long-term depdendencies” well for complex com-
positions like movie scripts.

8.2 Individual Feature

As to the effect of each individual feature, Linguis-
tic & Emotional Activity Curve show improvements
on both datasets, and yet the rest do not consistently
help, especially on MSC, we think it may be be-
cause (1) the tfidf has 500 dimensions so individual
feature may be overwhelmed, but, more features
combined such as adding Emotion Intensity, Lin-
guistic Activity Curve and Type-token ratio can
generate consistent improvements, (2) the efficacy
of feature can be dataset-dependent, e.g., we do
not observe significant differences in Arousal of
MSC as in its ScriptBase counterpart (Fig. 1), and
so does the classifier.

8.3 Combination of Features

Adding different combination of features could add
predictive power. But on different dataset, the ef-
ficacy varies. Also, features with negative corre-
lations (Fig. 6) can damage the performance, e.g.,
adding Emotional Activity Curve & VAD.



Figure 4: Visualization of individual feature effect
for TFIDF-SVMnarr See Sec 4 for definitions of ab-
breviations.

Figure 5: Visualization of individual feature effect
for BiGRUnarr. See Sec 4 for definitions of abbrevia-
tions.

9 Conclusion

We present a novel approach and features to an-
alyze the quality of a screenplay in terms of its
festival nomination-worthiness. This can serve
as a preliminary tool to help filmmakers in their
decision-making. Our results also show that sim-
ple lightweight approach can outperform state-of-
the-art document classification methods. This also
points out the current deficiency for long document
classification research in the community.

For future work, it would be interesting to de-
velop a more fine-grained approach by first decern-
ing what structure the script use among commonly
used ones (Miyamoto, 2018), and then go on to
further modelling analysis based on our current
approach.
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