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Abstract

Taxonomies are of great importance to
knowledge-rich domains like science and to
applications like information retrieval. Given
the glut of information available online, it is
valuable to be able to quickly sort individ-
ual documents by their broader topic areas
(e.g., their discipline) and their more granu-
lar semantics (e.g., their methodology). Hy-
perbolic embeddings, which incorporate hier-
archical information in the data they represent,
can be useful for building such taxonomies. In
this paper we extend existing taxonomy extrac-
tion techniques with hyperbolic embeddings.

1 Introduction

With the massive digitization effort of scientific
articles over the last 15 years, we now have ac-
cess to huge amounts of information, especially in
disciplines related to computer science.1 To take
advantage of such a glut of information, researchers
must be able to sift through papers to see if they
are applicable or interesting. To be able to search
through documents and identify the key concepts
and facets that are discussed would be of great
value. For example, it is difficult to instantly under-
stand the methods being proposed in a paper, the
domain the authors are working in, nor the metrics
used to assess their methods.

Similarly, it would be of great interest to examine
on a macroscopic level the direction research is tak-
ing by such aggregated concepts and facets. How
does the adoption of a particular method spread
over time?

Siddiqui et al. (2016) posed the problem of ex-
tracting such concepts and facets as the Facet Ex-
traction problem: to extract facets is to label each

1In the last three years alone there have been nearly 90,000
pre-print articles published on arxiv.org under computer sci-
ence.

document in a corpus with a ranked list of con-
cepts for each facet. This means that in a paper
about computer vision we may have a number
of deep neural network models and preprocess-
ing techniques (the concepts) be associated with a
technique facet for that document.

However, the Facet Extraction problem as it
stands does not allow for much hierarchy in the
concepts nor the facets. If we reframe the problem
as one where we jointly label each facet with a
list of concepts and induce a taxonomy over those
concepts, then we can treat the problem as one of
taxonomy construction. This may recover better
concepts and gain macroscopic insight as to what
the corpus is concerned about. Here we describe
an extension of an existing taxonomy extraction
framework HiExpan to incorporate more hierar-
chical information through the use of hyperbolic
embeddings.

2 Related Work

2.1 Facet Extraction

An early work in facet extraction is Gupta and Man-
ning (2011a), where they characterize a scientific
article in terms of its focus, technique, and domain.
A focus of an article is its main contribution. A
technique is any method or tool used in the article.
The domain is the article’s application domain. To
further illustrate this with an example, an article
that concentrates on regularization in RNNs for
speech recognition will have a focus of regulariza-
tion, techniques of regularization and RNNs, and a
domain of speech recognition.

To identify the concepts associated with each of
the three facets, the authors match a document’s
text to semantic patterns built on dependency parse
trees. Given a set of seed patterns (e.g, a focus
pattern is [present → direct object]), the authors
bootstrap more patterns from the corpus. After



re-weighting the discovered patterns, they identify
significant facets in each document. They also
topic model their corpus, and tie together the topics
with the concepts to analyze the influence different
communities have on one another.

Something that is interesting about this work is
that they utilize semantic patterns and dependency
parse trees to directly extract the relations. How-
ever, this work does not consider a richer set of
facets for analyzing their corpora. Likewise, they
do not rely on hierarchical information in the con-
cepts to inform the influence score.

Another important paper in Facet Extraction is
by Siddiqui et al. (2016). In this paper they ex-
plicitly define the Facet Extraction problem, and
present their framework for extracting concepts
and assigning them to arbitrary facets (which can
be user-specified). The authors treat the assign-
ment of concepts to facets as a joint optimization
over four constructed subgraphs: one with links be-
tween concept mentions and topical concepts, one
with co-occurrence between concept mentions and
section names (e.g., Introduction, Methods, Con-
clusion), concept mentions and relation phrases,
and one with concept mentions and suffix phrases
(e.g., ”-able” and ”-ition”). They then solve this
joint optimization problem as a mixed integer pro-
gramming problem.

This work does not assume a fixed set of facets,
and takes advantage of both local sentence-level
and corpus-level statistics for multiple levels of
granularity in facet extraction across different do-
mains. However, it is computationally expensive,
and implicitly models granularity which would be
explicitly captured in directly extracting a taxon-
omy of concepts and facets.

2.2 Taxonomy Construction

Automatic taxonomy construction has been a prob-
lem in computational linguistics for many years, as
it has been readily apparent the value in automat-
ically organizing a corpus into a well-structured
taxonomy to allow for quick information access
(or for instance recommendation of new articles).
Early methods rely heavily on pre-defined lexico-
syntactic patterns for extraction of straightforward
”is-a” relations (Hearst, 1992), which gives high
precision but very low recall given its fixed pat-
terns.

More recently, work has been done at combin-
ing insights from neural language models (namely,

using word embeddings trained under the Skip-
gram model) and an adaptive recursive hierarchical
clustering scheme to construct topic taxonomies
(Zhang et al., 2018). These topic taxonomies are
trees that have many semantically coherent con-
cepts assigned to each node, where the concepts
are more granular and specific the further down the
tree is traversed.

This work is limited in that it requires a fixed
number of clusters for its adaptive clustering mod-
ule. Relaxing this would allow for a more reliable
data-driven taxonomy generation. Similarly, this
work is implicitly relying on extracting hypernymy
”is-a” relations which limits the possible domain
applications of the taxonomies.

Current research in hyperbolic embeddings as
applied to concept hierarchies is also constrained
by hypernymy relations, as described in Le et al.
(2019). In this work, the authors learn a Lorentz
hyperbolic embedding model over the Hearst graph
(i.e., the graph of ”is-a” relations) and evaluate
performance by computing for any pair of words
the degree to which one is a hypernym of another.

Such pattern-based constraints are addressed by
HiExpan (Shen et al., 2018). In this work the
authors present a framework that takes a domain-
specific corpus, and a task-specific seed taxonomy.
With this the authors extract new terms from the
corpus, and using an iterative process of set expan-
sion and relation expansion fill out the seed taxon-
omy. This is all carried out as a joint optimization
problem that assigns each term to its appropriate
parent node in the taxonomy.

3 Method

In this section we describe the framework used to
incorporate dependency parse tree information into
the expansion of a seed facet taxonomy.

3.1 Dependency Parse Tree Extraction

In order to increase the extraction of specific men-
tions of concepts we can associate to facets, we
follow a similar approach to Gupta and Manning
(2011b). First, we use the SpaCy (Honnibal and
Montani, 2017) dependency parser to generate the
set of dependency parse trees for some corpus D.
Depending on the corpus, we specify a set of trig-
ger patterns.

We also construct the facet extraction pipeline
as described in Gupta and Manning (2011b) as a
baseline.



3.2 Iterative Tree Expansion

We use the same HiExpan framework as presented
in Shen et al. (2018) for iteratively expanding the
facet tree laterally and vertically. The input for the
framework includes two parts: (1) the corpus D;
(2) a seed taxonomy T 0 that is specified by the
user. Given the user-specified task, the framework
expands T 0 into an expanded taxonomy T . Each
node u ∈ T is a term extracted from D, and each
edge (u, v) denotes a task-specific relation. In facet
extraction, these represent ”is-a” relations.

The framework works by first extracting phrases
from the corpus D, followed by a part-of-speech
filter to ensure we recover nouns. After recovering
candidate terms, we iteratively expand the width
of the taxonomy and the depth. To expand the
width of the taxonomy tree we compute the simi-
larities between entities’ embeddings (learned via
a skipgram model), rank those similarities, and add
entities to the set of nodes (in this case, the level
of the tree) if the mean reciprocal rank meets a
threshold.

To deepen the tree we compute the similarities
for the embeddings of the entities to the target par-
ent node and treat the top three most similar entities
as candidate children nodes.

When the same node is found in multiple posi-
tions in the tree, we treat this as a conflict. We
compute the joint similarity for each node and its
parents and children to measure the confidence of
an entity at each particular node.

3.3 Hyperbolic Embeddings

In order to incorporate the syntactic hierarchical in-
formation in the dependency parse trees, we make
use of hyperbolic embeddings. Hyperbolic spaces
are non-Euclidean spaces with a geometry defined
by constant negative curvature. These spaces have
received considerable attention recently as they are
very useful for hierarchical data. For example, con-
sider some tree t. We can model the exponential
branching factor of t in as few as two dimensions:
nodes that are l levels deep in t sit on a hyperbolic
sphere with radius r ∝ l, whereas nodes that are
fewer than l levels deep sit within the sphere. This
is because in hyperbolic geometry disc area and cir-
cle length grow exponentially with their respective
radius.

There are multiple different equivalent mod-
els of hyperbolic geometry: the Klein model,
the Poincare disk model, the Poincare half-plane

model, and the Lorentz model.
We use hyperbolic embeddings trained on the

dependency parse trees for the corpus D. We mini-
mize the following loss function:

L(Θ) = Σ(u,v)∈D log
e−d(u,v)

Σv′∈N(u)e
−d(u,v′ )

(1)

In order to minimize the loss function we follow
the following learning procedure:

Θ
′ ← arg min

Θ
L(Θ) (2)

s.t. ∀θi ∈ Θ : ‖θi‖ < 1. (3)

where d(u, v) = arcosh(1 + 2
‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)
)

(4)

we update Θ by: (5)

θt+1 ← proj(θt − ηt
(1− ‖θt‖2)2

4
5E)

(6)

where5E =
δL(θ)

δd(θ, x)

δd(θ, x)

δθ
(7)

We use these embeddings in computing the sim-
ilarities between entities in the facet taxonomies.
We use the implementation described in Nickel and
Kiela (2018) which makes use of the Lorentz model
to learn the embeddings. As there are multiple dif-
ferent models that fulfill the hyperbolic geometry
axioms, we can convert between the Lorentz model,
which is well-suited to Riemannian optimization,
and the Poincare half-disk model which is well-
suited and intuitive for visualization, as seen in
the visualizations of the dependency parses of the
corpora in Fig.1 and Fig.2.

4 Experiments

To test the efficacy of the dependency parse trees in
expanding facet taxonomies, we set two research
questions:

Q1 Do hyperbolic embeddings of dependency
trees increase performance of HiExpan?

Q2 Do the hyperbolic embeddings of dependency
trees help construct facet trees?

To answer Q1, we compare the performance of
HiExpan on the same DBLP dataset used to test
it in (Shen et al., 2018). We use the same tested



Figure 1: 2 dimensional embedding of the dependency
trees on the ACL abstract corpus. Nodes labeled are
hubs computed by the HITS algorithm.

parameters for the basic HiExpan, and compare
the model against the model with the hyperbolic
embeddings.

To answer Q2, we use the extended HiExpan
model and compare its performance against the
model from (Gupta and Manning, 2011b) as the
baseline model.

4.1 Q1

To test whether the hyperbolic embeddings of de-
pendency trees increase the performance of HiEx-
pan on task-specific taxonomy construction, we
evaluate two different versions of HiExpan: one
with the original skipgram embeddings, and one
with hyperbolic embeddings. We evaluate the two
models on the DBLP dataset used in (Shen et al.,
2018) which contains 156 thousand computer sci-
ence abstracts. We evaluate the performance of the
two models with ancestor-F1 and edge-F1.

Ancestor-F1 measures whether or not we cor-
rectly predict ancestral relations in an taxonomy.
We compute it by comparing our predicted taxon-
omy to a labeled gold-standard in the following

Figure 2: 2 dimensional embedding of the dependency
trees on the DBLP abstract corpus. Nodes labeled are
hubs computed by the HITS algorithm.

way:

Pa =
|is-ancestorpred ∩ is-ancestorgold|

|is-ancestorpred|
(8)

Ra =
|is-ancestorpred ∩ is-ancestorgold|

|is-ancestorgold|
(9)

F1a =
2PaRa

Pa +Ra
(10)

Similarly, edge-F1 measures whether or not we
correctly predict the edges themselves in a taxon-
omy (regardless of order). We compute it in the
following way:

Pe =
|is-edgepred ∩ is-edgegold|

|is-edgepred|
(11)

Re =
|is-edgepred ∩ is-edgegold|

|is-edgegold|
(12)

F1e =
2PeRe

Pe +Re
(13)

4.1.1 Results
We present the results in Table 1. We compare the
results of hyperbolic embeddings on dependency
trees against the best configuration of HiExpan as
reported in (Shen et al., 2018). We compare the
three following hyperbolic embeddings configura-
tions:

• Min For every phrase extracted via Au-
toPhrase, we take the embedding of the word
with the minimum L2 norm.



Embeddings Pa Ra F1a
Euclidean (paper) 0.843 0.376 0.520
Euclidean (Impl.) 0.177 0.325 0.229

Hyperbolic (mean) 0.089 0.1706 0.1173
Hyperbolic (min) 0.073 0.135 0.095

Hyperbolic (concat) 0.091 0.091 0.091

Table 1: Experimental results with ancestor-precision,
recall, and f1. For the original HiExpan results, paper
results are reported as well as the results of our own
runs. The bolded results are the best of our runs, which
are significantly less than the results of the original pa-
per.

• Mean For every phrase extracted, we take the
mean over all the constituent word vectors.

• Concatenate For every phrase extracted, we
sum over all the constituent word vectors.

Results suggest that the original HiExpan with
the embeddings over all the terms perform better
than the hyperbolic embeddings trained on the de-
pendency parse trees of each sentence in the corpus.
We do not present the results for edge-f1 because
they do not change the outcome.

4.2 Q2

To test whether the hyperbolic embeddings of de-
pendency trees help construct facet trees specif-
ically, we compare the model from (Gupta and
Manning, 2011b) to two methods:

• a similar bootstrapping approach where we
use hyperbolic embeddings to expand the trig-
ger patterns instead of the iterative process
described in the paper

• the HiExpan model with the hyperbolic em-
beddings

We follow the same approach as in (Gupta and
Manning, 2011b) and use two annotators to ran-
domly label 30 abstracts from the ACL corpus (22
thousand articles), and compute edge-f1 for each
abstract.

A problem arose in that running the baseline
model requires labeled abstracts which were not
provided by the original authors. As such, we are
currently labelling 30 abstracts to validate the base-
line and expanded models.

5 Discussion

The results seem to suggest that the hyperbolic em-
beddings trained on the dependency parse trees for
the DBLP corpus do not help the HiExpan model.
Since we were unable to replicate the results of the
original paper, we compared the results to our own
runs of the model. With this caveat, the original
model outperforms the one with hyperbolic embed-
dings. There are a number of different reasons why
this might be the case:

1. The coverage of the extracted terms we were
able to get hyperbolic embeddings for was
13,600 terms out of a total of 17,100 extracted
from the corpus. The missing terms may have
been significant in downstream analysis.

2. We did not restrict the kinds of dependency
relations we considered in learning the hy-
perbolic embeddings. Future work will look
into only consider noun-phrase relations like
amod, nmod, compound, obj.

Future work would entail directly analyzing the
hyperbolic embeddings learned on dependency
parse trees in how they help extract facet trees per
Gupta and Manning (2011b). Dependency parse
trees may also not be that effective for this task, and
as such other sources of hierarchical information
like a constituency parse tree and existing ontolo-
gies like WordNet and ConceptNet.

References
Sonal Gupta and Christopher Manning. 2011a. Ana-

lyzing the dynamics of research by extracting key
aspects of scientific papers. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 1–9, Chiang Mai, Thailand. Asian
Federation of Natural Language Processing.

Sonal Gupta and Christopher Manning. 2011b. Ana-
lyzing the dynamics of research by extracting key
aspects of scientific papers. In Proceedings of 5th
international joint conference on natural language
processing, pages 1–9.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings
of the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Computa-
tional Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

https://www.aclweb.org/anthology/I11-1001
https://www.aclweb.org/anthology/I11-1001
https://www.aclweb.org/anthology/I11-1001


Matt Le, Stephen Roller, Laetitia Papaxanthos, Douwe
Kiela, and Maximilian Nickel. 2019. Inferring con-
cept hierarchies from text corpora via hyperbolic em-
beddings. arXiv preprint arXiv:1902.00913.

Maximilian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hyper-
bolic geometry. arXiv preprint arXiv:1806.03417.

Jiaming Shen, Zeqiu Wu, Dongming Lei, Chao Zhang,
Xiang Ren, Michelle T Vanni, Brian M Sadler, and
Jiawei Han. 2018. Hiexpan: Task-guided taxonomy
construction by hierarchical tree expansion. In Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, pages 2180–2189. ACM.

Tarique Siddiqui, Xiang Ren, Aditya Parameswaran,
and Jiawei Han. 2016. Facetgist: Collective extrac-
tion of document facets in large technical corpora.
In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Manage-
ment, pages 871–880. ACM.

Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen,
Meng Jiang, Brian Sadler, Michelle Vanni, and Ji-
awei Han. 2018. Taxogen: Unsupervised topic tax-
onomy construction by adaptive term embedding
and clustering. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2701–2709. ACM.


