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Abstract

Language Models (LMs) pre-trained on ex-
tremely large corpora have achieved signif-
icantly better performances than previous
models on Natural Language Understanding
(NLU) benchmarks including commonsense
reasoning tasks. Specifically, prior studies
have shown that simply fine-tuned LMs can
achieve performances on Winograd Schema
Challenge (WSC) close to human-level. How-
ever, the crucial question of whether LMs can
solve commonsense tasks due to the capability
of reasoning or just shallow pattern matching
has not been addressed. This work aims to ex-
tensively analyze the current LMs and probe
their capacity to understand commonsense tru-
isms regardless of how they are phrased. We
found that current state-of-the-art LMs are just
picking up statistical patterns in the training
data and do not have the capacity to fully un-
derstand commonsesne truisms.

1 Introduction

Pre-trained Langauge representations like
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have outperformed previous state-
of-the-art models by a large margin on multiple
NLU benchmarks, including those designed
to test commonsense reasoning like Common-
senseQA (Talmor et al., 2019) and WSC (Levesque
et al., 2012). Besides, several work has found
that simple methods like fine-tuning these LMs
can already yield a lot better results than the
more sophisticated models (Trinh and Le, 2018;
Kocijan et al., 2019). However, pre-trained LMs
notoriously require an extremely large amount of
training corpora and computing power. And the
training objective of the most widely used LMs
is simply predicting masked words in a sentence
without the injection of any knowledge or logic
rules (Liu et al., 2019).This naturally raises the

question that whether LMs produce good results
on commonsense reasoning datasets due to their
ability to reason and use logic like humans, or they
are dependent on some other clues.

The fact that LMs heavily depend on the train-
ing data likely makes LMs biased towards expres-
sions that appear in the training corpora most fre-
quently. However, the ability to reason about a
specific piece of commonsense knowledge or tru-
ism (an undoubted or self-evident truth) should not
be dependent on the way it is phrased. For example,
consider the truism “Objects cannot be contained in
containers smaller than themselves”, the statements
“A is larger than B, so A cannot be contained in B”
and “A is larger than B, so B can fit into A” should
both be correct and follow the truism despite the
second half is phrased differently. If LMs can only
make correct predictions if we mask “larger” in one
of the sentences but not the other, then LMs are still
lacking the ability to understand this commonsense
truism and are just picking up statistical patterns
in the training data. Besides, the reasoning ability
should also be isolated from the entity information
that is likely to be learned from training. For ex-
ample, instead of testing statements like “A car is
larger than a box, so a car cannot fit into a box”,
we will replace the real world entities with out-of-
vocabulary (oov) ones like “uorijnat” and “okuzen”
that are fictitious so that LMs cannot depend on the
entity information to “cheat”.

This work aims to answer the question of
whether LMs can actually perform commonsense
reasoning or they are just following patterns in the
training corpora. We will first provide an exten-
sive analysis using the state-of-the-art LM on the
simple task of masked word prediction. In order to
test if LMs can make the correct predictions regard-
less of how the truisms are expressed, we make
small perturbations of the statement that preserve
the semantics, like changing the word ordering or
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using synonyms. We will provide a dataset with
fictitious entities testing different types of common-
sense truisms containing the perturbations. If LMs’
performances are not consistent on the dataset, then
we argue that LMs are not equipped with the abil-
ity to reason about commonsense. As a next step,
we also aim to augment the LMs so that they can
perform more robustly under perturbations.

In summary, the contributions of our work are
three-folds: 1. We answer the crucial question of
whether LMs can solve commonsense tasks due to
the capability of reasoning or just shallow pattern
matching has not been addressed. 2. By isolating
reasoning from entity information and perturb com-
monsense truisms under the same semantics, we
create a dataset that can be used by future work
to test the ability for a model to understand com-
monsense truisms, which can be further transferred
to different datasets. 3. We construct a dataset of
commonsense truisms with perturbations to test the
robustness of current models.

2 Related Work

2.1 Leveraging LMs for Commonsense
Reasoning

Researchers have proposed models to leverage LMs
to directly help solve commonsense benchmarks,
specifically Winograd Schema Challenge (WSC).
WSC proposes a coreference resolution task that
requires commonsense reasoning. The datasets
provides a sentence with a pronoun, and asks the
machine to find the right candidate for the pronouns
from two options. Trinh and Le (2018)’s method
is very simple. They first substitute the pronoun
in the original sentence with each of the candidate
choices. The problem of coreference resolution
then reduces to identifying which substitution re-
sults in a more probable sentence. They then use an
LM to score the resulting two substitutions. They
find that an ensemble of LMs trained on large text
corpora ourperform previous methods using knowl-
edge bases (KB) which are a lot more complicated.

Kocijan et al. (2019) extend the previous work
by fine-tuning BERT (Devlin et al., 2019) on
Winograd-like datasets and get even better results.
One of the training objectives of BERT is masked
word prediction and they utilize this fact by mask-
ing the pronoun in WSC and ask BERT to pre-
dict the right word. To get more data for fine-
tuning, they generate Winograd-like datasets from
Wikipedia. Results show that they can improve

upon the previous SOTA methods by around 8%.
These methods utilizing LMs are conceptually

very simple, and they already yield better results
on WSC. This shows that LMs, especially latest
ones that are trained on huge corpora (RoBERTa
already gets around 89%) (Liu et al., 2019).

2.2 Probing LMs of Exploitation of
Statistical Cues

Some previous work has shown that LMs’ per-
formances on tasks like Nartural Language Infer-
ence (NLI), Argument Reasoning Comprehension
(ARC), and identifying paraphrases are due to sta-
tistical cues from the dataset (Niven and Kao, 2019;
McCoy et al., 2019; Zhang et al., 2019). Specifi-
cally, Niven and Kao (2019) probes BERT on the
task of argument mining. They find statistical cues
by defining applicability, productivity, and cover-
age, and they find not to be one of the most im-
portant cues for this task. They also create an ad-
versarial set where they negate the statement and
invert the label, and find BERTs performance drops
significantly.

McCoy et al. (2019) focus on the task of NLI.
They define three syntactic heuristics exploited by
the models and construct a dataset named HANS
based on them. For each heuristic, they generate
five templates for examples that support the heuris-
tic and five templates for examples that contradict
it. And then they augment LMs with HANS and
find that it helps to make the model more robust.
Zhang et al. (2019) provides a challenging para-
phrase identification dataset PAWS. Challenging
sentence pairs are generated by controlled word
swapping and back translation, followed by fluency
and paraphrase judgments by human raters. They
find that existing state-of-the-art models fail miser-
ably on PAWS when trained on existing resources,
but some perform well when given PAWS training
examples.

2.3 Probing LMs of Commoonsense
Knowledge

Very recently, there are several papers proposing
methods to examine that whether pre-trained LMs
have commonsense knowledge. Kwon et al. (2019)
introduce a new knowledge probing test designed
to analyze whether the LMs understand structured
common sense knowledge as semantic triples in an
external repository specifically ConceptNet (Liu
and Singh, 2004). They generate sentences through
predefined predicate patterns. For example, a pred-
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icate pattern of the “Antonym” relation can be “s
and o are opposite .” The predicate patterns of rela-
tions are collected from the Open Mind Common
Sense (OMCS) dataset (Singh et al., 2002). Our ap-
proach is different from theirs since we are testing
different types of commonsense truisms instead of
relations from ConcepNet.

Zhou et al. (2019) study the commonsense abil-
ity of several LMs by testing them on seven chal-
lenging benchmarks, finding that language mod-
eling and its variants are effective objectives for
promoting models commonsense ability while
bi-directional context and larger training set are
bonuses. They additionally find that current mod-
els do poorly on tasks require more necessary in-
ference steps. Finally, they test the robustness of
models by making dual test cases, which are corre-
lated so that the correct prediction of one sample
should lead to correct prediction of the other. In-
terestingly, the models show confusion on these
test cases, which suggests that they learn common-
sense at the surface rather than the deep level. Our
work distinguishes from this paper by considering
our own benchmark of truisms and better defining
the perturbation types instead of simply “adding,
deleting, replacing, or swapping” words in the test
instances.

3 Analysis of LMs for Commonsense
Truisms

In this section, we show analysis of LMs’ capabili-
ties to reason about commonsense truisms. We will
first describe our task to test the LMs and use an
example truism to demonstrate the perturbations.
Then we show how we construct our dataset of
three different types of commonsense truisms with
perturbations. Lastly, we will show the results.

3.1 Perturbed Masked Word Prediction

Masked word prediction is the most important train-
ing objective in pre-training LMs like BERT and
RoBERTa. Given a sentence, random words in
it are masked and the LMs have to predict the
masked words. It is considered a bidirectional train-
ing of language understanding. Here, in order to
test whether LMs can reason about commonsense
truisms or just learning frequent text patterns in
the training corpora, we perturb the original tru-
ism statement under the same semantics and com-
pare the performances for all perturbations. As
an illustrative example, we will focus on the tru-

ism “Objects cannot fit into containers smaller than
themselves”. And we mainly consider five types
of perturbations: asymmetry (applied to premise or
conclusion), negation, antonym, paraphrasing, and
any combination of the above.

3.1.1 Types of Perturbation

The perturbations types mentioned above can all
be considered as syntax changes that aim to modify
how the truisms are phrased without changing the
semantics or the commonsense knowledge tested
in the truism. In the following part, we will first
demonstrate each type of the perturbation, and then
show that how we combine several types of pertur-
bations together.

1. Original Truism: “A is larger than B, so A
cannot fit into B.” This is the original tem-
plate of the truism we consider. It is in the
form of “premise, conclusion”, since we want
to give the LMs enough context to make the
inference.

2. Asymmetric Premise: “B is larger than A, so
A can fit into B.” We swap A and B only in
the premise (second half), and replace “can-
not” with “can” to follow the right logic. The
intuition is that it is likely that in the training
corpora of LMs, the order of the entities in a
sentence is the same for the first half and the
second half. Thus the asymmetry of entities
created by swapping only the first half or sec-
ond half will make it unfamiliar to the models
that only remember textual patterns. Humans
can understand

3. Asymmetric Conclusion: “A is larger than B,
so B can fit into A.” We swap A and B only
in the conclusion (second half), and replace
“cannot” with “can” to follow the right logic.
The intuition of this perturbation is the same
as the previous one, except that we change the
ordering in the second half.

4. Negation: “A is not larger than B, so A can
fit into B.” For the negation type, we negate
the premise and flip “cannot” to “can” in the
conclusion accordingly. Some previous work
examining deep neural models for exploita-
tion of statistical cues (McCoy et al., 2019)
has found that negation can confuse models
greatly.
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5. Antonym: “A is smaller than B, so A can
fit into B.” We change the adjective in the
premise to its opposite and replace “cannot”
with “can” to follow the right logic. This is to
test that whether LMs understand the relations
between words and the semantic difference
the change brings.

6. Paraphrasing without Inversion: “A is larger
than B, so A cannot be put into B.” For para-
phrasing, we consider two sub-cases, one that
the logic key word like “can” needs not to be
flipped and one that it needs to be flipped to
make the logic correct and we call them “para-
phrasing without inversion“ or “paraphrasing
with inversion”, accordingly. In this specific
example, the conclusion part (second half) is
paraphrased from “fit into” to “be put into”,
but the “cannot” is kept same.

7. Paraphrasing with Inversion: “A is larger than
B, so A can contain B.” In this specific ex-
ample, the conclusion part (second half) is
paraphrased from “fit into” to “contain”, and
the “cannot” is flipped to “can”, so we call
this type as “with inversion”

8. Asymmetric Premise + Negation: “B is not
larger than A, so A cannot fit into B.” As men-
tioned earlier, we not only consider the single-
type perturbations, but we also combine two
or three single types together. Here we show
an example combining “asymmetric premise”
with “negation”, where we first swap the order
of the entities in the premise, and then negate
the comparative adjective. Note that the logic
needs not to be flipped. We will omit other
combinations of two single types of perturba-
tions.

9. Asymmetric conclusion + Antonym + Para-
phrasing with Inversion: “A is smaller than
A, so B can contain A.” Here we show an ex-
ample combining 3 single types: “asymmetric
conclusion”, “antonym”, and “paraphrasing
with inversion”, where we first swap the order
of the entities in the conclusion, swap “larger”
to its opposite word “smaller”, and then para-
phrase “be put into” using “contain”. We will
omit other combinations of three single types
of perturbations.

3.1.2 Scoring Metrics
In this part, we will show two settings for our exper-
iments that test commonsense reasoning abilities
of LMs.

Binary Setting We first evaluate by simply com-
paring the rankings of the masked word and the
other candidate. For example, in the truism: “A is
larger than B, so A cannot fit into B.” We can mask
“cannot” and treat “can” as the wrong answer. In
the binary setting, we feed the masked sentence
to the LMs and give the model score 1 if the right
answer appears higher than the wrong answer, and
0 otherwise. This setting tests only the rankings
of predicted words without taking into account of
the scores, which makes the results not influenced
by outlier words that have an extremely high score,
but also omit some nuances.

Ratio Setting To address the nuances in the rank-
ing scores of predicted words, we further pro-
pose a metric called ratio setting. Using the
example above, we denote the predicted score
for “cannot” as scoreright and that for “can” as
scorewrong. Then we calculate our final score us-
ing: (scoreright − scorewrong)/scoreright. The
more positive the final score is, the better the per-
formance according to this metric, and vice versa.
This setting can take into account the score differ-
ence given by the models, but it can also make the
results more easily influenced by outlier words that
have an extremely high score or low one.

3.2 Dataset Construction

Here we present how we construct commonsense
truisms with perturbations mentioned before to test
whether LMs can reason about commonsense or
just learning textual patterns in the training corpora.
We pose two constraints in the templates of the
truisms and their perturbations. First, all truisms in
our dataset are in the “premise, conclusion” style,
since we want to give LMs enough context to rea-
son about the fictitious entities that will be filled in
the templates. Second, all templates involve com-
parisons between two objects or two people so that
we can mask the comparative word like “larger” or
“smaller” and evaluate the LMs based on which of
these two opposite words is ranked higher.

We consider three types of commonsense knowl-
edge: physical constraints, material properties, and
social interactions. Truisms about physical con-
straints focus on testing the relationships between
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certain attributes of objects and their implications
in our physical world. The truism of “A is larger
than B, so A cannot fit into B.” mentioned before is
of this type. Besides length, we also consider other
attributes like hardness, heaviness, etc.. Truisms
about material properties aim to test if LMs un-
derstand that each material has specific properties
like “wool is softer than metal”. An example of
the truism is “A is made of wool and B is made of
metal, so A is softer than B.”. For truisms about
social interactions, we want them to test common-
sense knowledge about people in social lives. An
example is “A won the competition and B lost, so
A is happier than B.”.

We ask humans to generate templates of truisms
for each type with perturbation described in the pre-
vious subsection and we manually examine each
truism to make sure it is correct and obvious for
humans. For each category of commonsense knowl-
edge, we collect around 20 truisms testing different
knowledge in the category. Then for each truism,
we have around 16 different perturbations. This
results in 320 truisms for each type of knowledge
and 960 in total. Lastly we randomly generate 100
fictitious words that range from 3 to 12 characters
to fill in the templates at the locations of “A” and
“B” , resulting in 96000 commonsense truism with
entities.

3.3 Results

Here we show results of testing a state-of-the-
art LM called RoBERTa on the task of perturbed
masked word prediction using the commonsense
truisms we construct. We present several different
visualizations of our results to discuss our findings.
We will present and discuss the results using the
two settings that we introduced separately.

3.3.1 Binary Setting
Perturbations greatly affect the performances
In this part we use a slightly different terminology
to indicate the perturbation types. We use index
from 1 to 8, where 1 to 4 are order changes (asym-
metry of entities), and 5 to 8 are combinations of
antonym perturbation with order change.

Figure 1 shows the experimental results on
RoBERTa for the “A is larger than B, so A can-
not fit into B” truism. We can see that RoBERTa
performs perfectly with order change type 1 and
2, regardless of the adjective swap. However, for
order change type 3 and 4, which is changing the
order of only the second half of the truism, it can

1 2 3 4 5 6 7 8
Types of Syntax Change Perturbations
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Figure 1: Results of average accuracy (y-axis) of the
“A is larger than B, so A cannot fit into B” truism with
different types of perturbations (x-axis) that match the
index of the syntax change perturbations.

make zero right predictions, exactly opposite of the
other syntax perturbation types. This demonstrates
that the performance of the LMs for commonsense
reasoning heavily depends on the way the truism is
phrased. And in this case, the order change of the
second half of the truism may be a lot less stated
in the corpora, making the LMs confused when the
truism is expressed this way.

We also find that changing the lexicon influences
the results a lot. As Figure 2 shows, the only
change we make about the truism is using “con-
tain” instead of “fit into” and replace the “cannot”
with “can” to make the logic right. The results are
totally reversed, where the order change types 1
and 2 make the performance of the LMs close to
zero and types 3 and 4 will produce almost perfect
predictions. This shows that the lexical used also
affects RoBERTa’s performance on commonsense
reasoning a lot.

Inconsistency exists for all types of common-
sense Since we have three different categories
of commonsense truisms constructed, we also want
to test if the inconsistency illustrated above also
applies to other types of knowledge.

Figure 3 shows the average of the largest differ-
ence in accuracy across perturbations for the three
types of commonsense knowledge we considered.
We can see that all of them are close to one, indi-
cating that on average, RoBERTa performs very
inconsistently under perturbations for all the com-
monsense truisms.
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Figure 2: Results of average accuracy (y-axis) of the “A
is larger than B, so A can contain B” truism with differ-
ent types of perturbations (x-axis) that match the index
of the syntax change perturbations. The only difference
from Figure 1 is that we change the lexicon used, but
the meaning is preserved.

Physical Material Social
Types of Commonsense Knowledge
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Figure 3: Results of average largest difference across
perturbations (y-axis) of the constructed truism with
different types of commonsense knowledge (x-axis).
We can see that all average differences are close to 1,
which means that the performances of RoBERTa are
extremely inconsistent under perturbations.

Original Negation Para Para_Inv Antonym
Types of Perturbations
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Figure 4: Results of average ratio score (y-axis) of the
physical truisms with different types of perturbations
(x-axis).

3.3.2 Ratio Setting
In this part, we will present and discuss our experi-
mental results using the ratio score metric. We use
the same truisms we collected and RoBERTa LM.

The average performance is very poor As
mentioned earlier, the ratio scoring metric, al-
though takes into account of more nuanced infor-
mation, can be influenced by outliers very easily.
For example, if in some perturbed truisms, the ratio
is a large negative number due to that the score
of the wrong answer is a lot higher than that of
the right answer, then this instance will lower the
average ratio score for truisms by a large margin.
However, this still shows that LMs fail on some
cases or some truisms miserably since it makes a
confident wrong choice and this metric penalizes
that.

Figure 4 shows the average ratio score for several
single-type perturbations on our physical truisms.
We can see that except for “antonym” type, all oth-
ers have a negative average score. This shows that
on average, the ratio score indicates that LMs per-
form very poorly on collected truisms with pertur-
bations. The antonym being the only positive may
be due to that LMs can understand the semantics
of some adjectives but not their opposite, possibly
because of the frequency in the training corpora.

Similarly, Figure 5 shows that the average perfor-
mance when applying the asymmetry perturbations
also is very poor for physical truisms. We can also
see that if we change the order of entities in the
premise, the influence is higher. Interestingly, the
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Figure 5: Results of average ratio score (y-axis) of the
physical truisms with different types of perturbations
(x-axis).
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Figure 6: Results of average ratio score (y-axis) of the
material truisms with different types of perturbations
(x-axis).

original has a worse performance than when we ap-
ply asymmetry on conclusion for physical truisms.

LMs perform poorly on different types of com-
monsense We also present experimental results
on material and social truisms.

Figures 6 and 7 show the results of single per-
turbation types as well as asymmetry perturbations
for material truisms in our dataset. Again, we can
see that all of them are well below zero, meaning
that on average the poor performances of LMs on
truisms with perturbations also exist for material-
related commonsense truisms.

Finally, we also present results for social tru-
isms shown in Figures 8 and 9, which strengthen
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Figure 7: Results of average ratio score (y-axis) of the
material truisms with different types of perturbations
(x-axis).
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Figure 8: Results of average ratio score (y-axis) of the
socail truisms with different types of perturbations (x-
axis).
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Figure 9: Results of average ratio score (y-axis) of the
social truisms with different types of perturbations (x-
axis).

our observation and shows that LMs can hardly
understand truisms with perturbations, and are not
robust.

4 Conclusion

In summary, we have conducted detailed survey on
using LMs for commonsense reasoning and prob-
ing LMs for exploitation of statistical cues and
commonsense knowledge, constructed a dataset
of commonsense truisms with well-defined types
of perturbations, provided analysis based on ex-
perimental results using our dataset and RoBERTa
as the state-of-the-art LM. We find that in the bi-
nary setting, perturbations greatly affect the perfor-
mances of the LM and the inconsistency exists for
different types of truisms (physical, material, and
social). Under the ratio setting, we show that the
average performance of RoBERTa using our score
metric is very poor regardless of the domain of
commonsense knowledge, indicating that the there
is still much improvement of LMs to understand
commonsense.
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