Reasoning Paths Generation for Commonsense Question Answering

Peifeng Wang

Abstract

Commonsense question answering (QA) re-
quires a model to acquire some necessary
background knowledge about how the world
operates and people interact with each others.
A large number of works have been dedicated
to resort the help from commonsense knowl-
edge graphs. However, these methods do not
consider the context of the questions while
retrieving evidence from knowledge graphs.
Moreover, knowledge graphs are known to be
far from complete and might not contain the
necessary knowledge for answering the ques-
tions. In this paper, we propose to learn a rea-
soning paths generator to generate structured
evidence dynamically according to the ques-
tions. Our generator uses pre-trained language
model as the backbone, leveraging the tremen-
dous unstructured knowledge stored in the lan-
guage model to alleviate the incompleteness
of knowledge graph. In addition, we pro-
pose to further train our whole framework to
solve downstream tasks in a end-to-end fash-
ion, greatly adjusting our generator to better
serve the QA system. We further conduct
experiments on commonsense QA dataset to
demonstrate the effectiveness of our method.

1 Introduction

Most of the traditional question answering (QA)
tasks are fact-based, which means that the QA sys-
tems could solely rely on some factoid evidence to
answer the questions. For example, the machine
reading comprehension based QA datasets usually
provide some context as the only necessary source
of evidence for answering the questions. They
aim to test a system’s ability of answers extraction
over a given context (Rajpurkar et al., 2016). For
open domain QA datasets, they require the sys-
tems to retrieve relevant evidence via some Infor-
mation Retrieval (IR) methods from large corpus
like Wikipedia. In this case, besides answers ex-

traction, they also test a system’s ability for fact
finding at scale (Chen et al., 2017).

On the contrary, commonsense QA datasets
including Commonsense QA (Talmor et al.,
2018), Social IQA (Sap et al., 2019b) and Cos-
mosQA (Huang et al., 2019), require reasoning
over not only factoid evidence but also some
background knowledge. Such background knowl-
edge often refers to commonsense about how
this world operates or how human interacts with
each other. For example, to answer the question
”Where would you find fungus growing on some-
thing made from milk?”, we need commonsense
knowledge like cheese is made from milk and fun-
gus often grows on outdated food. Such knowl-
edge is obvious for humans but not easy for most
of the QA systems to retrieve (Talmor et al., 2018).

One direct solution for addressing these com-
monsense QA datasets is to leverage the knowl-
edge graph (KG) for commonsense like Concept-
net (Speer et al., 2017) and ATOMIC (Sap et al.,
2019a). Such KGs provide valuable facts on com-
monsense to complement the current QA systems.
However, leveraging commonsense KG is non-
trivial and poses the following challenges.

1. Enormity. A knowledge graph often consists
of millions of triplet facts and only a few of
them are relevant to the target questions.

2. Sparcity. Knowledge graphs are also known
to be extremely incomplete. They might lack
the facts which are necessary for answering
the questions.

Previous works (Lin et al., 2019; Lv et al.,
2019) on addressing the first challenges usually
seek the help from some entity linking systems
and graph searching algorithms. They firstly
recognize the mentioned entities and link them
to the KG. Then they construct a subgraph by

searching the paths between these entities. The
quality of the constructed subgraph relies heav-
ily on the performance of the entity linking sys-
tems and sampling strategies, which brings the
risk of error-propagation. For the second chal-
lenge, many efforts have been put for common-
sense KG completion (Li et al., 2016; Bosselut
et al., 2019). Nonetheless, they are not question-
oriented, meaning that the newly-added knowl-
edge facts still fail to cover the ones necessary for
answering the questions. A recent work (Fu et al.,
2019) augments the KG on the fly but still faces
the first challenge.

To address both of the challenges, we propose
a context-conditioned reasoning paths generation
framework for solving commonsense QA. The
proposed framework learns to generate reasoning
paths dynamically based on the given question and
answer choices for further reasoning, which aims
at solving the first challenge. As for the second
challenge, our framework adopts the pretrained
language model as the backbone. This allows us
to take advantage of the tremendous unstructured
knowledge which is encoded in the large language
model to complement the incomplete KG. Later,
the framework employ a simple classifier to fuse
both structured and unstructured evidence to make
the final decision.

We summarize our contributions as follows.

1. We propose to fine-tune generative language
model on sampled paths from KG to obtain a
reasoning path generator. The paths genera-
tor serves for building structured knowledge
dynamically as external evidence for solving
commonsense QA.

2. We propose a end-to-end training framework
for our model, which efficiently fuses infor-
mation from both structured and unstructured
knowledge for reasoning.

3. We perform an empirical study on the per-
formance of our model in different setting.
Currently, our performance over fine-tuned
language models are not significant, indicat-
ing the room for improvement of our whole
framework.

2 Background and Problem Setting

Unlike traditional KGs which have a well-defined
space of entities and relations, KGs for common-
sense like Conceptnet focus on modeling entities

as natural language phrases and relations as open
domain concepts (Bosselut et al., 2019). This also
leads to the difficulty for grounding the subgraph
from a KG. Still, an observed commonsense KG
could be framed as G = (£,R). Commonsense
facts are in the form of triplets (s,r,0), where
s,0 € & represent the entity phrases while r € R
represents the relation between them.

We consider such a problem setting where given
a question (q), the task needs the system to select
one of choices ({a;}) as the right answer. The
commonsense QA datasets mentioned above all
fall into this setting. More importantly, these QA
datasets require commonsense knowledge where
commonsense KG might offer some but not all of
the help.

In this paper, we focus on training a graph gen-
erator which generates a KG subgraph dynami-
cally for each of the question such that the sub-
graph (1) is informative for answering the question
and (2) contains knowledge facts which is miss-
ing from the sparse KG. In particular, we reduce
the subgraph generation problem into multi-path
generation problem. Assume that we employ a
reasonable entity linking system which extract all
the entities mentioned in the questions {e]} and
those mentioned in the answer choices {ef}. Our
path generator G learns to output a reasoning path
which connects one question entity and one choice
entity. We argue that the message passing in a sub-
graph represented by these paths also facilitates
the reasoning process. Moreover, this reduction
allows us to leverage the power of the recent pre-
trained language models, and we use GPT-2 (Rad-
ford et al., 2019) in this paper.

3 Subgraph Generation

The workflow of training a path generator G for
solving commonsense QA consists a pre-training '
stage and fine-tuning stage as follows.

3.1 Learning to Connect Entities

The goal of the pre-training stage is to teach
our graph generator to generate a reasoning path
which connects e to e. This path is supposed to
encode a snippet of a commonsense KG which we
rely on to boost the QA system.

We firstly sample a bunch of triplet paths via
random walk on the commonsense KG as our pre-

!The pre-training stage here is different from the one in
language models.

Table 1: Some sampled paths from Conceptnet.

(fucosidases, formof, fucosidase, derivedfrom, fucoside, derivedfrom, fucose, _formof, fucoses)

(spot_candy-aisle, _hassubevent, buying_fresh_fruits_and_vegetables,
hassubevent, meet_other_people, _hasprerequisite, socialize, _relatedto, play_street)

(cyanolipids, formof, cyanolipid, relatedto, nitrile, _relatedto, octakis, _derivedfrom, octakishexahedron)

(new_invention_to_made, _causes,creating_idea,hassubevent,scratch_head,_hassubevent,cogitating,hassubevent,scratching_head)

(chess_pieces_fall_over,_causes,playing_chess,hassubevent,think, _relatedto,vessel, _relatedto,patrol_boat)

Algorithm 1 Paths Sampling

Input: G = (£, R)

Output: A set of triplet paths {p}.
1: repeat

2: current_node u < uniform_sample(E)

32 p<+{u}

4: fort=1toT do

5: N « Neighbor(u)

6

7

8

9

next_node v <— uniform_sample(N)
M «+ All_Relations(u,v)
r < uniform_sample(M)
: p <+ pU{rv}
10: U<
11: end for
12: until Maximum number of paths achieved.

training dataset. The sampling algorithm is illus-
trated in Algorithm 1. The sampled path is in the
form of {eg, 79, €1,71,...,77_1,er} where e, € €
and r;, € R. Each consecutive triplet (e;, 74, €141)
is a fact stored in G. Such a path provides an exam-
ple to our graph generator G about what a possible
reasoning path looks like.

We employ GPT-2, a pre-trained language
model as the backbone of our graph generator
G. Unlike COMET (Bosselut et al., 2019) which
trains GPT with independent triplets, we trains
GPT-2 with consecutive triplets as paths. We
convert each sampled path to their text form
X = {Xo, Yb, Xl, Yl, ceey YT—la XT}, where Xt =

0 .1
{7, xp, ...,

xft‘} is the phrase tokens for the en-
tity e; and Yy = {9, v}, ..., yl”'} is the phrase to-
kens for the relation r;. In order to further mimic
the scenario where the model is provided with one
question entity and one answer entity, here we add
the last entity phrase tokens X7 together with a
separate token SEP at the beginning of each path.
By doing so, the generator would know where the
final entity it should arrive at the end when gener-
ating the path. Since we would like to maximize

the probability of such observed path, we use neg-
ative log likelihood as the loss function:

L=->) log P(x), (1

where P(x) is the product of conditional probabil-
ities:
i=|x|

Px) =][Plai | z<), @
i=0
The conditional probability is defined as:
P(z; | x<;) = softmax(h,W). 3)

Here h; denote the final representation from GPT-
2 for x; and W is the embedding matrix for the
vocabulary of both entity and relation phrases.

The benefits brought by learning to generate the
sampled paths from G are two-fold. One is that we
enrich the language model with structured knowl-
edge such that it could generate paths with “com-
monsense” style for further reasoning. Another
is that the unstructured knowledge encoded in the
language model could alleviate the sparsity issue
in KG. Some of the training paths are illustated in
Table 1.

3.2 Fine-tuning on Task Dataset

Our ultimate goal is to empower the QA system
with the generated reasoning paths as external ev-
idence for better performance. In general, our
whole framework for solving commonsense QA
consists of two major parts. The first part is the
aforementioned paths generator G. The second
part is the classifier which is provided with both
the structured evidence from the path generator
and the unstructured one from a language model as
input, and outputs the plausibility for each choice.

To encode the reasoning paths, we employ two
different strategies which are called offline and on-
line encoding respectively.

Offline Encoding

The strategy to encode the reasoning paths would
leverage our generator G in a offline fashion. That
being said, we take the generated paths from G
as fixed discrete evidence to a path encoder, and
just drop G away. Here, we use LSTM (Hochre-
iter and Schmidhuber, 1997) as our single path en-
coder and a multiplicative attention network (Lu-
ong et al., 2015) to aggregate multiple paths in a
meaningful way.

For each pair of question entity e! and choice
entity e7, the path generator G output a reasoning
path p connecting them. Then py, is fed to the
LSTM encoder to get a single path embedding py,
with pooling over all hidden states. Since not all
of the paths would contribute to the decision about
which choice is the right answer, we employ an
attention network to select softly the meaningful
paths:

P=) P)
k

The attention weight oy, of each path embedding
Px is computed by

exp(s)
= —=——— ", &)
Ek/ exp (Sk/)
where
sp = ¢ tanh(Wopy). (6)

Here, the attention network is parametrized by a
linear projection W,. The context embedding c
is obtained by encoding the unstructured evidence
via a language model. In specific, we simply con-
catenate the question and the choice with a sepa-
rate token in between, namely [¢, SEP, a]. Then
we feed it to the language model to obtain its
context embedding. In essence, the context em-
bedding provides a guidance about which path is
meaningful for solving the current question.

Online Encoding

Since the offline encoding of reasoning paths pre-
vents us from training the whole framework end-
to-end since the gradient could be back propagated
through the discrete paths. Thus, we also consider
employing an online encoding for representing the
paths in a continuous way. In specific, we conduct
pooling over the hidden states {h;} of the genera-
tor to get a path embedding py, instead of leverag-
ing LSTM. Then everything else remains the same
design as in the offline encoding. Several advan-
tages over offline encoding are brought by online
encoding.

Table 2: Statistics on Commonsense QA.

#Train #Dev
8767 974

#Test
1221

Dataset

Commonsense QA

1. We save the trouble of training the LSTM en-
coder which introduces additional parameters
to our framework.

2. The generator is adjusted to the task dataset,
which certainly bridge the discrepancy be-
tween pre-training and fine-tuning.

3. The hidden states from the generator surves a
better function for encoding reasoning paths
since the generator is pre-trained on both
large corpora and structured triplet paths.

Fusing Heterogeneous Evidence

With unstructured evidence provided by context
embedding c and structured one provided by paths
embedding p at hand, our classifier leverages both
of them to compute the plausibility of a question-
choice pair. In specific, we concatenate ¢ with p
and feed them to a one layer of linear transforma-
tion to get a score for each question choice pair.
Then the score is normalized by a softmax layer to
get the final probability. The model is optimized
by minimizing the cross-entropy loss.

4 Experimental Setup

We evaluate our method on the Common-
senseQA (Talmor et al., 2018), a multi-choice QA
dataset evaluating a model’s ability on reasoning
with commonsense knowledge. We use the official
develop set as our test set since the labels for the
official test set are not released. We further ran-
domly sample 10% of the official training set as
our development set. The statistics for the dataset
is shown in Table 2.

4.1 Dataset Processing

To extract all the entities for all the question sen-
tences, we use plain string matching as in the pre-
vious work from Lin et al.. As for the entities for
the answer choices, we simply treat each of them
as a single entity since most of them are indepen-
dent concepts in ConceptNet.

4.2 KG and Paths Sampling

We use ConceptNet as our commonsense KG. We
discard all the triplets with some uninformative re-

lation types > which offer little help for answering
the questions.

When sampling paths from ConceptNet, we
adopt two different strategies as follows.

1. Local Sampling. All the random walks start
from the entities which appear in the ques-
tions of the task training set. This setting
help our generator to generate paths which
are more task-dependent.

2. Global Sampling. We also randomly pick
some entities from KG and conduct random
walks starting from them. This would help
increase the diversity of our paths dataset and
prevent our generator biased towards local
structure of KG.

For both of the strategies, we sample paths with
hops ranging from 3 to 5 in order to construct
paths dataset with mixing hops. This would help
our generator learn to connect entities with differ-
ent hops of paths as needed. We finally obtain
672378 paths in total and split them into train-
ing/develop/test set with ratioof 8 : 1 : 1.

Since the backbone of our generator is a pre-
trained language model, we convert each relation
in KG into mention phrases with predefined tem-
plates. This is crucial for us to leverage the knowl-
edge encoded in the language model. The result-
ing paths would be of more “natural language”
style, with which the language model could be
thus friendly triggered to generate paths.

4.3 Hyper-parameters

We employ a pre-trained GPT2-base model (Rad-
ford et al., 2019) as the initialization of our gener-
ator. Then we fine-tune the generator with a initial
learning rate of 1e —b5 and a batch size of 128. The
learning rate is changed with a warm-up period of
1000 mini batches and then linearly decayed. The
training lasts until the loss on development set no
longer decreases for 3 epochs.

For training over task datasets, we search the
optimal hyper-parameters based on the classifi-
cation accuracy on development set. The ini-
tial learning rate is choosing from {5e — 5, le —
5,5e — 6, 1le —6}. The batch size is choosing from
{8,16,32,64,128}. Large batch size is achieved
by accumulating gradient through several small

Yncluding relatedto, synonym, antonym, derivedfrom,

Sformof, etymologicallyderivedfrom, and etymologicallyrelat-
edto

Table 3: Classification Accuracy on Commonsense

QA.

Models ‘ Dev (%)
RoBERTa | 72.89
KagNet 64.46
OCN +CN 67.30
RoBERTa+ CSPT | 76.2
Our (Online) | 7256

batches. We also train our model with a warm-up
period of 500 mini-batches and linearly decrease
the learning rate. The training lasts until the accu-
racy no longer increases for 5 epochs.

4.4 Baselines

We consider baselines including pure language
models and other methods which leverage struc-
tured knowledge and/or unstructured knowledge.

Pre-trained Language Model. Since our goal
is to enhance the QA system with external knowl-
edge and part of our model relies on pre-trained
language model, we compare our method to a
strong baselines, i.e., ROBERTa (Liu et al., 2019).
As in our framework, we use the CLS token em-
bedding from RoBERTa as the context embedding
and feed it to a linear classifier to obtain the score.
We fine tune RoBERTa with a learning rate of
le — 5 and batch size of 32 as suggested by previ-
ous works.

Models with Static KG. Another contribution
of our work is that our model builds dynamically
KG for commonsense QA. Therefore, we compare
our method with previous ones which rely on static
KG. KagNet (Lin et al., 2019) adopts the same
task setting as ours except that the subgraph is lo-
cated by finding all paths connecting question en-
tities and answer entitites on existing ConceptNet.
OCN+CN (Ma et al., 2019) also adopts a similar
setting, but they only consider one-hop relations
between questions entities and answers entities.

Model with both KG and Text. We also
consider ROBERTa+CSPT, a model which is pre-
trained over synthetic dataset constructed from
ConceptNet and Open Mind Common Sense
(OMCS) corpus (Singh et al., 2002).

Table 4: Effect of Joint Training. Classification Accu-
racy on Commonsense QA In-house (Th) Develop Set
and Official Develop Set (as Test Set).

Models ‘ Ih Dev (%) Test (%)
RoBERTa (base) | 53.23 54.14
Offline 43.08 44.80
Online 54.56 54.96

5 Experimental Results

5.1 Overall Performance

The general results on Commonsense QA is
shown in Table 3. We could observe that com-
pared with models using static KG, our model per-
forms much better with an accuracy increase as
much as 8.10%. This demonstrates the effective-
ness of our model in generating contextual KG
which is helpful in addressing commonsense QA.
One drawback of our model is that when it comes
to incorporating external knowledge to pretrained
language model, our method does not bring any
improvement. This could be due to the sim-
ple concatenation of context embedding and path
embedding, which is not the optimal way to in-
fuse structured and unstructured knowledge. Also,
our model is outperformed by RoBERTa+CSPT
by a considerable margin (3.64%). We believe
its performance gain is brought by fine-tuning
RoBERTa on the OMCS corpus, which helps the
pretrained language model adapts to Common-
sense QA dataset more easily.

5.2 Effect of Joint Training

The results in Table 4 show that our online model
outperforms both fine-tuned RoBERTa (base) and
especially our offline model with a significant mar-
gin. This demonstrates the effectiveness of joint
training of our whole framework, including path
generator and reasoner. During joint training, both
the generated paths and their embeddings are ad-
justed to the task dataset, which is crucial for
transferring knowledge from KG to the QA sys-
tem. On the other hand, our offline model per-
forms poorly compared with RoBERTa. Note that,
this does not mean that the generated paths are not
helpful in assisting the QA system. It could be the
case that the LSTM path encoder introduces more
parameters to the whole model and are not well-
learned due to limited supervision signal.

5.3 Robustness to Sparsity

One of the biggest advantages of providing rea-
soning paths to QA system is that these exter-
nal evidence introduces more inductive bias to
the model. This would greatly help the model
to be survive from less training data and gen-
eralize better. Therefore, we randomly sam-
ple {20%, 40%, 60%, 80%, 100%} of the training
data to see whether our model is more robust
than the baseline. Results in Table 5 does show
a consistent performance across different amount
of training data. On one hand, our model does
outperform fine-tuned RoOBERTa when 60% and
100% of the training data is used. However, the
gap between them is marginal. This also expose
the problem of our model failing to efficiently
combine the evidence from two perspectives. On
the other hand, when the training data becomes
sparser, fine-tuned ROBERTa continues to outper-
form our model and the performance gap is in-
creasing larger. This demonstrates the robust-
ness of large language models. Indeed, the per-
formance of fine-tuned RoBERTa does not drop
significantly when less training data is used. We
guess that the commonsense knowledge which
is necessary to solve those questions are already
stored in these large-capacity language models.
Even with less training data, these language mod-
els still manage to reorganize its information to
serve the downstream tasks.

6 Related Work

Both structured knowledge stored in a knowledge
base and unstructured text from large web corpus
proved to be valuable sources for question answer-
ing. According to how the knowledge from both
sizes cooperates, we list out three categories of
these works which 1) supplement inference over
KB with text, 2) supplement inference over text
with KB, or 3) fusing knowledge from KB and text
jointly.

6.1 Textto KB

In order to address the incompleteness of KB,
several works augment their models with exter-
nal evidence from text data. For some of them,
text is only used as additional feature to en-
hance the inference over KB (Krishnamurthy and
Mitchell, 2012; Reddy et al., 2014; Choi et al.,
2015; Savenkov and Agichtein, 2016; Lin et al.,
2019). They utilize external text to better under-

Table 5: Classification accuracy on test set with models trained on different amount of training set. Results are
obtained by running experiments for 4 times with different random seed.

Model | 20%

40%

60% 80% 100%

RoBERTa Fine-Tuned | 67.16(£0.90)
Our (Online) 64.60(£1.00)

69.75(+1.14)
68.22(+£0.88)

69.59(+1.20) 72.25(+1.10)
70.72(£0.79) 72.24(+0.33)

72.53(+1.05)
72.59(40.57)

stand the questions as well as enrich the features
for candidate answers. Recent work (Fu et al.,
2019) also make use of corpus for extracting new
facts to complete KB during inference.

As methoned above, these methods are better at
compositional reasoning over KB which unstruc-
tured text do not support (Das et al., 2017), and
are greatly improved when enhanced by text ev-
idence. However, when faced with more open-
domain questions, evidence from text might be
more useful and should serve as the main contri-
bution instead of a complementing role. More-
over, they neglect the other side where structured
knowledge could help inference over text.

6.2 KB to Text

There also exist some works investigating the re-
verse direction, i.e., leveraging KB to improve in-
ference over text. For example, the work in Sun
et al. 2015 links each candidate answer in search
text to the entities in KB in order to get their se-
mantic feature. Further, Xiong et al. 2019 em-
ploys gating mechanism to incorporate necessary
strucutred knowledge to better encode questions
and passages. While these methods make up the
shortage of KB-oriented counterparts, the obvious
limitation is that the factoid knowledge in KB is
not consulted to obtain answers directly. Likewise,
they also omit the possible benefits brought by the
text-to-KB line of approaches.

6.3 Fusing KB and Text

Limited attention is drawn to exploit evidence
from KB and text jointly for integral reasoning.
Early works utilizing both sources adopt a late
fusion strategy. They either aggregate predic-
tions which are grounded independently from each
size (Ferrucci et al., 2010; Baudis, 2015), or sim-
ply unify structured and unstructured knowledge
with universal schema and feed them to memory
network as input (Das et al., 2017). As pointed
out by Sun et al. 2018, this strategy is sub-optimal,
as models have limited ability to aggregate evi-
dence across the different sources and ignore the
rich inter relations between both sizes. To bridge

these gaps, Sun et al. 2018 adopts an early fusion
strategy instead. They firstly construct a question
subgraph to incorporate both KB and corpus via
entity links. Then they propose heterogeneous up-
date rules to fuse knowledge from different nodes.
Lv etal. 2019 adopts a similar strategy to construct
a graph from both sources but their method to fuse
the heterogeneous knowledge is twisted. Firstly,
nodes from both sizes are presorted as sequences
and concatenated into one single input of a lan-
guage model which generates a sequence repre-
sentation. Then graph neural networks are used
to generate representation for the whole graph. Fi-
nally, both the sequence and graph representations
are used to compute the prediction score.

To some extent, these works step further to ex-
ploit both KB and text in a more unified way than
the works introduced in the previous two subsec-
tions do. Therefore, evidence from both sizes
could be considered jointly to better answer the
question of any kind. Still, they emphasize more
on relying question to select useful evidence from
KB and text. The interaction of both sizes is ful-
fill only by knowledge fusion. Possible guidance
from one size to encode the other size is not ex-
plicitly investigated.

7 Conclusion and Future Works

We propose to learn a reasoning paths generator
aiming to provide external evidence dynamically
to assist QA system. Expermental results show
that our current method does not improve much
over fine-tuned language models, exposting two
major problems or directions for us to develop
our method. One is that we have no gurantee on
whether the generated paths could really help bet-
ter reasoning, and we also lack the ground truth for
useful paths. Probably we need to exploit more
features from the given context to help us select
paths. Another is that our current way of incor-
porating structured and unstructured evidence is
not optimal in fusing heterogeneous information.
A better design for increasing interaction between
the two modules is needed.

References

Petr Baudis. 2015. Yodaqa: a modular question an-
swering system pipeline. In POSTER 2015-19th In-
ternational Student Conference on Electrical Engi-
neering, pages 1156-1165.

Antoine Bosselut, Hannah Rashkin, Maarten Sap,
Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. 2019. Comet: Commonsense transformers
for automatic knowledge graph construction. arXiv
preprint arXiv:1906.05317.

Danqgi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettle-
moyer. 2015. Scalable semantic parsing with par-
tial ontologies. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1311-1320.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and
Andrew McCallum. 2017. Question answer-
ing on knowledge bases and text using universal
schema and memory networks. arXiv preprint
arXiv:1704.08384.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building watson: An overview
of the deepqa project. Al magazine, 31(3):59-79.

Cong Fu, Tong Chen, Meng Qu, Woojeong Jin, and
Xiang Ren. 2019. Collaborative policy learning for
open knowledge graph reasoning. arXiv preprint
arXiv:1909.00230.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading
comprehension with contextual commonsense rea-
soning. arXiv preprint arXiv:1909.00277.

Jayant Krishnamurthy and Tom M Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
754-765. Association for Computational Linguis-
tics.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1445-1455.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. arXiv preprint
arXiv:1909.02151.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang,
Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang,
Guihong Cao, and Songlin Hu. 2019. Graph-
based reasoning over heterogeneous external knowl-
edge for commonsense question answering. arXiv
preprint arXiv:1909.05311.

Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric
Nyberg, and Alessandro Oltramari. 2019. To-
wards generalizable neuro-symbolic systems for
commonsense question answering. arXiv preprint
arXiv:1910.14087.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377-392.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi.
2019a. Atomic: an atlas of machine commonsense
for if-then reasoning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 3027-3035.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019b. Socialiqga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Denis Savenkov and Eugene Agichtein. 2016. When
a knowledge base is not enough: Question answer-
ing over knowledge bases with external text data. In
Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Infor-
mation Retrieval, pages 235-244. ACM.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223—-1237. Springer.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W Co-
hen. 2018. Open domain question answering us-
ing early fusion of knowledge bases and text. arXiv
preprint arXiv:1809.00782.

Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai,
Jingjing Liu, and Ming-Wei Chang. 2015. Open do-
main question answering via semantic enrichment.
In Proceedings of the 24th International Conference
on World Wide Web, pages 1045-1055. International
World Wide Web Conferences Steering Committee.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. arXiv preprint arXiv:1811.00937.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2019. Improving question
answering over incomplete kbs with knowledge-
aware reader. arXiv preprint arXiv:1905.07098.

