Augmenting Question Answering with Natural Language Explanations
CSCI-699 Final Report

Qinyuan Ye
ginyuany@usc.edu

Abstract

Towards building annotation-efficient question
answering (QA) systems for real information
seeking needs, we propose a framework that
efficiently augments training data by leverag-
ing natural language explanations to annotate
unanswered questions. Explanations describ-
ing how an answer is arrived for one refer-
ence QA instance are first parsed into exe-
cutable rules, and then applied to large-scale
unanswered questions (e.g. questions raised in
search engines, online forums). Answers with
high confidence will be regarded as a training
instance and potentially improve QA model
performance, especially in low-resource set-
ting. We highlight (1) the generalization abil-
ity in rule matching and (2) annotation effi-
ciency in our proposed framework.

Currently, we have collected 200+ explana-
tions for SQuAD instances. The parser can
successfully parse and validate 42% of them.
We expect the parser to be further improved
with the expansion of predicate dictionary.
Meanwhile, we have several reasonable ob-
servations in our case study of rule hard-
matching, such as the trade-off between preci-
sion and coverage and variations in acceptable
answers.

1 Introduction

Recent advances in natural language processing
claims human-level intelligence in the task of
Question Answering (QA) (Joshi et al., 2019; Lan
et al., 2019). However, two important factors are
often hidden behind this appealing news piece. (1)
State-of-the-art results strongly rely on large-scale
annotated datasets. It is impractical and time-
consuming to collect such dataset for a new do-
main or a new language to achieve comparable,
human-level performance. (2) Questions in these
datasets are raised from given context via crowd-
sourcing, so these questions are collected on pur-
pose, are not “naturally occuring” (Kwiatkowski
et al., 2019), and do not reflect real-world needs
of seeking information. These two factors imply
a huge gap between QA model in research phase
and QA model for application.

Question: How is packet switching characterized?
Context: ... In cases of billable services, such as cellular
communication services, circuit switching is
characterized by a fee per unit of connection time, even
when no data is transferred, while packet switching may
be characterized by a fee per unit of information
transmitted, such as characters, packets, or messages.

Q1: What are the phrases that are important for you
to locate the answer?

X: | packet switching |

e | characterized |

Z.:l |

Q2: How do you locate the answer? (You can use
phrases in Q1)

A: | The question starts with "how", so the answer
should probably start with "by". X and Y
sandwich "may be". The answer is directly
after Y in the context.

Figure 1: Annotators provide natural language expla-
nations to describe how they arrive at the answer for
a labeled QA instance. These explanations are then
parsed into structured rules and used to answer similar
questions. Pseudo-answered instances will enlarge the
train set and allow the downstream QA model capture
more information.

In this project, we aim to leverage unlabeled
data with natural language (NL) explanations to
build annotation-efficient, down-to-earth QA sys-
tems. Fig. 1 shows an example of NL explanations
that we collect. Annotators are shown a reference
QA instance and are required to explain how the
answer is arrived in a few sentences. Though an-
notating explanations takes more time, such in-
formation can be potentially applied to numerous
unanswered questions and create a larger training
set, thus improving annotation efficiency. More-
over, these explanations sticks to the reference QA
instance, which can provide domain-specific infor-
mation, and become applicable to new instances
within this domain.

The proposed framework is composed of two
parts: (1) Rule Parser; (2) Matching Engine. The

rule parser will transform natural language ex-
planations into structured and executable rules.
The Matching Engine, which employs a heuris-
tic search strategy and consists of several trainable
modules in its evaluation phase, will take full ad-
vantage of the parsed rules to answer unanswered
questions. One highlight of the Matching Engine
is that it is dynamically constructed with the con-
tent of each rule, inspired by the notion of neural
modular network. This also enables fuzzy match-
ing to improve rule coverage by pseudo-labeling
instances that slightly break the rule.

Our framework is model-agnostic, as it serves
as data augmentation and provides training in-
stance with high confidence to downstream QA
models. Desirably, the performance of down-
stream model will be improved with large-scale,
pseudo-answered instances with high confidence,
comparing to the case where the training set only
contains a few human-annotated instances. Exten-
sive analysis including annotation efficiency, ab-
lation study on modules, and case study will be
conducted to demonstrate the strength of our pro-
posed framework.

2 Related Work

Question Answering Question answering (QA)
has long been considered an important benchmark
task in natural language understanding (NLU). Re-
cent advances in QA largely benefit from large-
scale annotated datasets such as SQuAD (Ra-
jpurkar et al., 2016, 2018) and WikiQA (Yang
et al., 2015). Several recent datasets are designed
to probe specific abilities of machine comprehen-
sion. For example, HotpotQA (Yang et al., 2018)
focus on multi-hop reasoning and DROP (Dua
et al., 2019) focus on discrete and arithmetic rea-
soning.

On the other hand, the capability of QA mod-
els is strongly enhanced with the introduction
of large-scale pre-trained representations such as
BERT (Devlin et al., 2019). Later on, SpanBERT
(Joshi et al., 2019) extends BERT by masking
spans (instead of masking single tokens) and train-
ing span boundary representations. Such tech-
nique enhance span-related tasks such as QA and
co-reference resolution. More recently, ALBERT
(Lan et al., 2019) pushed forward the state-of-the-
art on GLUE and SQuAD benchmark with fewer
parameters than BERT-large. At core of ALBERT
is two parameter reduction technique: cross-layer

parameter sharing and factorized embedding pa-
rameterization. BiDAF (Seo et al., 2016) is a no-
table model before the introduction of BERT. It
employs a hierarchical multi-stage process that in-
corporates character-level, word-level, contextual
information and allows attention flow to obtain a
query-aware context representation.

QA for Real Information Need. Most of the
existing datasets are collected in a context-
oriented manner. That is, annotators are first
shown a piece of context (usually a paragraph),
and are required to ask questions accordingly.
Even though the annotators are encouraged to
paraphrase and use their own words, large lexi-
cal overlap between the raised questions and the
context is observed. Thus the trained model may
be merely learning surface patterns, and perfor-
mance on these datasets does not reflect real com-
prehension ability. Another stream of work gather
QA instances from trivia questions (quiz competi-
tions) (Joshi et al., 2017; Dunn et al., 2017). Such
quizzes already provide question and answer, and
the dataset is then augmented context using in-
formation retrieval tools. One issue that remains
with all the datasets mentioned above is they’re not
“naturally occurring” questions from human that
are seeking information. Recent work start to pro-
pose datasets that based on real information need,
starting with questions that people poses on search
engine or web forum. Natural Questions (NQ)
(Kwiatkowski et al., 2019) collects questions that
users input into Google search engine and pair the
question with a top-ranked Wikipedia page. One
notable contribution of this work is that is stud-
ies the variations in acceptable answers and intro-
duce new metrics to evaluate QA models. There
are several domain-specific QA datasets that also
reflect real information need, including legal do-
main (Zhong et al., 2019), biomedical domain (Jin
et al., 2019), tech support (Castelli, 2019) and e-
commerse (Gupta et al., 2019), etc.

Natural Language Explanation. Srivastava
et al. (2017) first introduced the usage of natural
language explanation in concept learning. Each
statement s in set S is first parsed into logical
form with a CCG parser and acts like a binary
feature function z = f(z) € {0,1}. The original
representation of the instance, x, is augmented
with binary feature outputs z, and is later fed
into a classifier. Though only a small number of

instances are required to achieve competitive per-
formance, the task is done in a purely supervised
way.

More recently, Hancock et al. (2018) proposed
a BABBLELABBLE framework for training classi-
fiers with NL explanations, and succeeded in three
relation extraction tasks. BABBLELABBLE aban-
doned trainable CCG-based parser and adopted
a simpler and fixed rule-based parser with no
domain-specific predicate dictionary. Another dif-
ference is that the z is not used to augment x but
is used to pseudo-label = instead. This charac-
teristic is more similar to data programming set-
ting (Ratner et al., 2016, 2017) and enables semi-
supervised learning on unlabeled corpus. This
piece of work focus on annotation efficiency, in-
stead of pushing forward the state-of-the-art.

Wang et al. (2019) proposed NEXT framework
which further extends previous work with mod-
ularized labeling functions. That is, the labeling
function is constructed with small function blocks
following the tree-structure of parsed NL expla-
nations. Each block is parameterized and some
of them are trainable. Compared to (Hancock
et al., 2018), NEXT enables controllable and train-
able fuzzy matching. This helps deal with low-
coverage issue of labeling functions and enlarge
the size of training set in low-resource setting.

3 Proposed Framework

The proposed framework includes two parts: (1)
Rule Parser that transforms collected NL expla-
nations to structured and executable form, and (2)
Matching Engine that search for answers given a
rule, a question and some context. In the follow-
ing, we will first restate the problem, and introduce
the parts respectively.

3.1 Problem Statement

Question Answering. Here we describe a gen-
eral setting in question answering. In the train-
ing set, each instance (g, a, C') includes a question
q, one valid answer a and a list of context infor-
mation C' = {c¢;}. The valid answer can either
be (1) a paragraph (long answer setting in NQ;
TechQA); (2) a short span (short answer setting
in NQ; SQuAD). In the test set, multiple valid an-
swers may be acceptable to allow variations in an-
swers. The goal of a QA model is to output one
valid answer with the input of question ¢ and con-
text C'.

$Is $Left $Right $In $AtLeast $Contain
$ArgX $ArgY $ArgZ $Question $Answer $Context
$Count $Word $Sandwich $StartWith $EndWith $Similar
$Person $Location $Time $Number $Noun S$Adjective

Table 1: Example predicates. Raw explanations are
first mapped to a predefined dictionary of predicates.

@AND @EQUuAL @ls @BETWEEN
@IN @STARTSWITH @NER @CHUNK
@LEFT @RIGHT @WITHIN @ENDSWITH

Table 2: Example functions. The semantic part of pars-
ing results should be an logical form constructed with
functions in a predefined list.

Natural Language Explanation. During anno-
tation, in addition to the answer a, the annotator
is required to answer questions with natural lan-
guage in order to describe how they arrive at an-
swer a. Alternatively, a may be already obtained
from other sources and annotators input explana-
tions only. One example is shown in Fig. 1. The
sentences in response to Question 2 are denoted
with E = {e;}. Each sentence e; can be poten-
tially pared into one rule r;, and the rule set R is
defined as R = {r;}.

Data Splitting. We use S, to denote the set of
(¢, C, a, E) quadruples we collected from annota-
tors. S, is the set of unanswered question-context
pairs (¢,C). Note that |S,| < [S,|. R is the
set of all rule sets R extracted from explanations
with Rule Parser. In addition, S, is used to denote
the (¢, C, a, s) quadruples produced by R with the
matching engine, where s is the confidence score.
The set of (¢, C') in S, forms a subset of S,,.

3.2 Rule Parser

As shown in Fig. 1, annotators are required to in-
put NL explanations £ = {e;} for a given refer-
ence QA instance. Following previous work (Sri-
vastava et al., 2017), we use Combinatory Cat-
egorial Grammar (CCG) based semantic parsing
(Zettlemoyer and Collins, 2012) to parse these ex-
planations into executable forms. In brief, words
and phrases in each explanation e; will be first
mapped to their predicates (examples in Table
1). After that, a CCG parser will try combin-
ing neighboring predicates (e.g. combine “2” and
“$Tokens” into @NUM(‘2”, “tokens”)) and fi-
nally construct the semantics of the whole sen-
tence. An example parse is shown in Fig. 2.

“in” is in the answer and X
“in” $Is $In $The S$Answer $And $ArgX

NP PP/NP NP/NP NP Var\.Var/.Var NP
“in” 2x.@In0(x) Axx “answer” Ay Ax.@And(x,y) “ArgX”

S/PP NP
Ay.@Is(“in”,y) “answer”
PP
@InO(*answer”)

S
@Is(*“in”,@In0(*answer™))

Ay x@Is(xy) 2y Ax.@Within(y,x) Ax.@Num(*2"x)

Ay.@Is("ArgX”.y)

is within 2 words before Y
$1s $Within o $Tokens SLeft SArgY
(SINP)/PP PP/PP/N NN N PP/NP NP

“tokens” Jx.@Left(x) ArgY”

N

PP
@Num(*2", “tokens™) @Left(*ArgY™)

PP/PP
Ay. @Within(@Num(“2”, “tokens™), y)

PP
@Within(@Num(*2”, “tokens”), @Left(“ArgY™))

S
@Is(“ArgX”,@Within(@Num(“2”, “tokens”). @Left(“ArgY™)))

S
@And(@Is(“in”,@In0(“answer™)), @Is(“ArgX”, @Within(@Num(“2”, “tokens™), @Left(“ArgY™))))

Figure 2: Parsing process of explanation “IN” IS IN THE ANSWER AND X IS WITHIN 2 WORDS BEFORE Y.

Predicate Lexical Semantic
$PersonNER = NP @NER(CPERSON”)
$Contains = S\NP/NP \yx.@Is(y, @IN(x))
$Left = (S\NP)/NP \y x. @LEFT(y,x)

Table 3: Example lexicons. One lexicon entry maps a
predicate to its lexical category and semantic meaning
(using the functions in Table 2)

Beam search. Each word or phrase may be
mapped to multiple lexicons (e.g. “right” can be
describing a position, or expressing “directly”).
Moreover, built-in grammar rules in CCG allows
abundant linguistic variations. These two factors
results in large search space. To deal with this is-
sue, we employ beam search. That is, in the i-
th step, ¢ 4+ 1 lexicons should have been already
combined, and a predictive classifier will output a
confidence score p(r) for this intermediate parse
r on ¢ + 1 lexicons. We control the beam size to
maintain a reasonable search space size.

Predictive Classifier. We follow (Zettlemoyer
and Collins, 2007) and construct a feature-
based classifier to select promising (intermediate)
parses. In a parse 7, we count the number of oc-
currence that predicate f; is an argument for f;
as g;;. In the example in Fig. 2, the value for fea-
ture @ WITHIN @ NUM will be 1, and the value for
feature @IS@NUM will be 0. All g;; are listed to
form the feature fector g. The classifier then com-
putes the confidence score p(r) as follows to rank
the candidate parses for beam search :

p(r) ~ exp(0Tg) (1)

The parameter 6 is trained by maximizing the
score on parses 7 that are (1) complete, no variable
or missing components in the result semantics; We
denote this as r € Z,; (2) validated on the refer-
ence QA instance; i.e., 7(q, a, C) = True. Denot-

ing v(¢q,a,C) = Z. N {r : r(q,a,C) = True},
the maximization objective is

exp(07g)
r’'€v(q,a,C) eXp(ngl)

p(rle) = 5)

3.3 Matching Engine
3.3.1 Answering Strategy

With the natural language explanations collected,
we now have a list of variables and a list of answer-
ing rules with the help of Rule Parser. We now
introduce how matching engine is used to provide
pseudo-answers for unanswered question-context
pair. The answering strategy can be roughly bro-
ken into the following three operations, and done
with heuristic beam search method. The process
goes in a loop of “fill-evaluate-filter” until all vari-
ables are filled. We choose the answer with the
highest evaluation score as the pseudo-answer for
the instance and add it to S,.

Fill Variables such as X, Y and Z are defined by
the Turkers in Question 1. Additionally, we in-
troduce one variable ANS (the answer) and one
variable SENT (the sentence containing the an-
swer). We require each variable (except ANS) to
either have a Chunk type or NER type. We use the
constituency parser and NER model in AllenNLP
(Gardner et al., 2017) to extract variable candi-
dates for one variable.

Evaluate We evaluate the feasibility for each
candidate combination with the parsed logical
forms. Details of the modules used in evaluation
can be found in the next section. We skip the log-
ical forms that contains pending variables (not as-
signed with any candidate yet).

Filter After fill and evaluate, each intermediate
instance has a score, and we maintain a beam of a

pre-defined size, storing the most promising inter-
mediate results, and start the next iteration in the
loop by filling a new variable.

3.3.2 Modules in Evaluation

String Matching In previous work (Wang et al.,
2019), string matching module is pre-trained by
clustering key phrases in each category. Read-
ing comprehension (RC) is significantly different
from classification problems, as RC does not have
pre-defined classes or categories. And thus we
seek help from pre-trained representations such as
BERT, which potentially learned semantic similar-
ities in pre-training. The input to a string matching
module is a phrase p of length m and a sentence s
of length n. The goal of string matching module
is to identify the location of p (or its equivalence)
in s. The output will be two n-dimensional vec-
tors, vy and v., in which wvy; represent the proba-
bility that p (or its equivalence) appear in s with
the starting position of 7. v, correspond to end-
ing poisition. This is to ensure the length of p’s
equivalence will not be constrained. We plan to
calculate vy; and vg; in the following way:

, W] = BERT(p)
, Un] = BERT(S)

vp; = sim(wy, u;)

[wl,wg,

[u17u2,

3)
Vei = sim(wp, u;)

There can be several modifications to the design
above. For example, the sim function can be any
kind of distance metrics, or a learned metric as
in Relation Networks (Sung et al., 2018). Also,
wy and w,, may be replaced with a mean pool-
ing result over BERT(p). We also have an idea in
mind to train an attention on top of BERT to en-
able contextualized string matching. We will try
out these variations and select the one with best
performance.

Location To evaluate p; is within d words
left/right of py in s, the location module
takes the output of String Matching(pi, s) and
String Matching(ps,s) and output a scalar
score for logical calculation. To evaluate py is be-
tween p; and po in s, the location module takes the
output of String Matching(p;,s), i = 0,1,2
and output a scalar score. Detailed implementa-
tion is still in discussion.

Logical Instead of wusing soft logic, i.e.,
AND(p1,p2) = p1 + p2 — 1, we plan to use

Dataset #Train #Dev #Test
SQuAD 2.0 130,319 11,873 8,862
Natural Questions 307,373 7,830 7,842
TechQA 600 310 490

Table 4: Statistics of Datasets.

graphical model to make sure the scale is not
influenced by the number of constraints. The intu-
ition is that two conditions with 70% confidence
may not be as good as three conditions with 60%
confidence. If there are n rules in the current
answering function, m can be evaluated with the
filled variables, and S = {s1, S2, ..., S} shows
the evaluation score of the m rules, this module
outputs a score sg = f(m,n,S) as the confidence
of the current state. Note that we can always
transform the parsed rule so that logic operation is
always the root of the tree.

4 Experiment Setup

4.1 Datasets

We plan to do experiments on the following three
QA benchmark datasets. The statistics of these
datasets are summarized in Table 4. Among these
three datasets, we believe NQ and TechQA relate
to our problem setting more closely. Meanwhile,
SQuAD 2.0 as a widely-used dataset also serves
as a testbed to simulate the practical situation and
evaluate the efficiency of our method.

(1) SQuAD 2.0 (Rajpurkar et al., 2018) is a
widely-acknowledged QA dataset. Annotators are
first shown a paragraph from wikipedia, and then
asked to raise several questions and provide an-
swers. Due to the nature of this dataset collec-
tion process, the question and context tend to have
large lexical overlap.

(2) Natural Questions (NQ) (Kwiatkowski et al.,
2019) consists real anonymized, aggregated
queries issued in Google search engine, and re-
flect real information seeking needs of human.
The annotators are shown the question and a top-
matching wikipedia page, and are required to pro-
vide long answers (a paragraph) and short answers
(a span; yes/no). Questions requiring multiple
paragraphs to answer will be marked as unanswer-
able in long answer setting.

(3) TechQA (Castelli, 2019) is from technical sup-
port domain and consists of questions posed by
real users in IBM Develop Forum. These ques-
tions are then carefully paired with solutions in

Whatis What was How many When did
What year Whatare Whatdoes When was
What type Whowas Whatdo How much

Table 5: Example Question Heads. Top 40 question
heads cover more than half of the questions.

700 +

Figure 3: Question head distribution (Top 12)

IBM Technote (a user manual for technical issues)
by domain experts.

4.2 Explanation Collection

We first ensure the instances sent for annotation
are typical and can represent the commonly-raised
questions. We use some heuristics to roughly clas-
sify the questions with “question heads” (question
word such as “what”, plus one word after it). Ex-
amples of question heads are shown in Table 5.
In a 5% split of SQuAD, we found 1899 ques-
tion heads, and the top 40 question heads takes up
53.6% of the split. This shows a majority of ques-
tions are raised in similar ways; and can poten-
tially be answered in similar ways. We randomly
sample 6 questions for each question head. This
results in 240 QA instances sent for annotation.

We collect explanations with Amazon Mechan-
ical Turk. As shown in Fig.1!, turkers are required
to answer two questions about one QA instance.
The answer in the context is highlighted in red
for convenience. Turkers are rewarded with $1 for
each accepted responses. As of now, we have col-
lected 215 accepted explanations. We will adjust
the annotation interface and collect explanations
for NQ and TechQA dataset.

'Fig. 1 is a simplified version of annotation interface.
Turkers are shown detailed examples and suggests expres-
sions in the actual interface.

Question How is packet switching characterized?

X packet switching

Y characterized

Explanation The question starts with “how is”, so the an-

swer probably starts with ”by”. X is before Y.
The answer directly follows Y.

Table 6: QA instance used in Case 1.

Implied (A) @ISCANS’, @ CHUNK('P"))

(B) @STARTSWITH(’Question’,’how is’)
(C) @STARTSWITH(’ Answer’,’by’)

(D) @IsCX’,@Left(’Y”))

(E) @Is(Answer,@DIRECT(@RIGHT(’Y")))

Explained

Table 7: Logical Form from the example in Case 1.

Constraint Matched Correct Precision

All 6 5 83.33%
-(O) 16 12 75.00%
-(D) 18 11 61.11%
-(E) 17 11 64.71%

Table 8: Hard matching result. “-(C)” means the con-
straint (C) in Table 7 is dropped in matching. Sim-
ple dropping strategy can extend the coverage of rules,
with acceptable sacrifice in precision.

5 Preliminary Results

All results are preliminary. We’re still in the pro-
cess of expanding the lexicon dictionary. The re-
sults will be improved when more NL explana-
tions becomes parse-able. Currently, 42.92% of
collected explanations can be parsed and success-
fully validated.

5.1 Case Study with Hard-matching

Case 1: Precision and Coverage Trade-off.
Similar to those labeling function in (Hancock
et al., 2018) and (Wang et al., 2019), explanations
tend to over-specific, which results in high preci-
sion but low coverage. Dropping one of the con-
straint can be considered as a straightforward way
to soften the rule. Our results in Table 8 shows a
larger coverage with acceptable accuracy.

When enforcing hard matching, we found 6
matches, 5 of which are acceptable in human ex-
amination. The answers provided in SQuAD may
be slightly different from the hard-matched result
because the varying length of span or whether
prepositions such as “in” and “by” are included,
which we believe are trivial.

We also tested a simple dropping strategy in rule
matching. For example, if we do not require the
answer to be directly following variable Y, 11 in-
stances can be matched and answered in the whole
SQuAD training set, 64.71% of the answers are

Question Where do safari hunters usually stay?

X safari hunters

Y stay

Explanation The question starts with “where”, so
the answer should be a place. “in” is
in the answer. X is within 2 words be-
fore Y. The answer is directly after Y.

Where does 112th Street start?
Morningside Heights
in Morningside Heights

Question
Answer (provided)
Answer (matched)

Question
Answer (provided)

Where does digestion begin?
in the mouth with the secretion of
saliva and its digestive enzymes

Answer (matched) in the mouth

Table 9: Example hard match result from one rule. We
observe that one question may be correctly answered in
many ways. Small variations such as including “in” or
dropping unnecesary details can also result in correct
answers. The matched results are still useful in such
cases.

correct. Existing QA models tend to be poor at
few-shot learning, and thus increasing the scale of
training instances while sacrificing precision can
still be helpful.

Case 2: Studying variations in answer. As
shown in Table 9, the answers provided in SQuAD
is not the only correct answer. In our human ex-
amination, we consider an answer with one more
preposition (e.g. “in”, “by”) as correct. Some-
times a span shorter than the provided answer is
also sufficient, and we also mark this as correct.
This validates the claim in (Kwiatkowski et al.,
2019) that there is variability in answers, and eval-
uation metrics other than F1 and exact match may
be needed. The authors address this problems with

a 5-way, robust evaluation metric.

6 Plans for Future Research

6.1 Compared Methods

We will compare our models with existing super-
vised and semi-supervised QA models.

Hard-matching. We directly evaluate test set by
hard-matching the rules in R.

Supervised. The (¢, C, A) triple in S, is used as
training set to supervised learning models. Com-
pared methods include (1) ALBERT (Lan et al.,
2019), the most recent published state-of-the-art
model on SQuAD 2.0 as of December 12, 2019;
(2) BiDAF (Seo et al., 2016), a classical model
that incorporates character-level, word-level, con-
textual information and allows attention flow; (3)

BiDAF++ (Yang et al., 2018), which is an en-
hanced version of (Seo et al., 2016) by incorporat-
ing character-level models, self-attention and bi-
attention.

Semi-supervised. The (¢, C, A) triple in S, and
the whole unanswered set S, is used as train-
ing data. Compared methods include (1) GDAN
(Yang et al., 2017); (2) Cloze-style Pretraining
(Dhingra et al., 2018).

6.2 In-depth Analysis

Annotation Efficiency. To demonstrate that in-
troducing natural language explanation is efficient
compared to only providing an answer, we plan
to do controlled experiments on the number of in-
stances used and the annotation time used. For ex-
ample, we check the number of instances used to
train a supervised model that achieves the com-
parable score with our proposed method, and cal-
culate the time used for annotation. The desired
result will be our method saves annotation efforts.

Ablation Study. We plan to do ablation study on
the fuzzy matching ability of String Matching,
Location and Logical module.

Case Study. We plan to manually examine
pseudo answers with high confidence. This will
certify the interpretability and generalization abil-
ity of our proposed framework.

7 Conclusion

In this report we explore and discuss a poten-
tial way to augment question answering dataset
with natural language explanations. The pro-
posed framework follows previous work in rela-
tion extraction and aspect-based sentiment anal-
ysis (Wang et al., 2019). Several challenges are
raised in extending previous work to QA, includ-
ing finding the anchor word, dealing with multi-
ple sentences, and dealing with span prediction in-
stead of traditional classification. There are still
lots of work left to be done in this project, includ-
ing (1) further expanding the predicate and lex-
icon dictionary to achieve better parsing results;
(2) discussing the mathematical details for mod-
ules used in evaluation; try out different imple-
mentations and select the most suitable one; (3)
crowd-sourcing high-quality explanations. We be-
lieve studying annotation efficiency for question
answering has great value in bridging the gap be-
tween research and real-world applications.

References

Vittorio Castelli. 2019. The techqa dataset.
preprint arXiv:1911.02984.

arXiv

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Bhuwan Dhingra, Danish Danish, and Dheeraj Ra-
jagopal. 2018. Simple and effective semi-supervised
question answering. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 582-587.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. In Proc.
of NAACL.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda,
Anirudha Rayasam, and Zachary C Lipton. 2019.
Amazonqa: areview-based question answering task.
In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 4996-5002.
AAAI Press.

Braden Hancock, Martin Bringmann, Paroma Varma,
Percy Liang, Stephanie Wang, and Christopher Ré.
2018. Training classifiers with natural language ex-
planations. In Proceedings of the conference. Asso-
ciation for Computational Linguistics. Meeting, vol-
ume 2018, page 1884. NIH Public Access.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedga: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567—
25717.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics,
7:453-466.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784—789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383-2392.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proceedings of the VLDB Endowment,
11(3):269-282.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
gramming: Creating large training sets, quickly. In
Advances in neural information processing systems,
pages 3567-3575.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing
from natural language explanations. In Proceedings
of the 2017 conference on empirical methods in nat-
ural language processing, pages 1527-1536.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip HS Torr, and Timothy M Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1199-1208.

Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and

http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640

Xiang Ren. 2019. Learning to annotate: Modu-
larizing data augmentation for textclassifiers with
natural language explanations. arXiv preprint
arXiv:1911.01352.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013-2018.

Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and
William Cohen. 2017. Semi-supervised qa with
generative domain-adaptive nets. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1040-1050.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369-2380.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to log-
ical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678—687.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial gram-
mars. arXiv preprint arXiv:1207.1420.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2019. Jec-
ga: A legal-domain question answering dataset.
arXiv preprint arXiv:1911.12011.

