
Efficient Task Adaptation with Normalization

Wenxuan Zhou
University of Southern California

zhouwenx@usc.edu

Abstract
Large pre-trained text encoders like BERT
start a new chapter in natural language process-
ing. A common practice to apply pre-trained
encoders to sequence classification tasks (e.g.,
classification of sentences or sentence pairs) is
by feeding the embedding of [CLS] token (in
the last layer) to a task-specific classification
layer, and then fine tune the model parame-
ters of pre-trained model and classifier jointly.
In this paper, we conduct systematic analysis
over several sequence classification datasets to
examine the embedding values of [CLS] to-
ken before the fine tuning phase, and present
the imbalanced gradient issue—i.e., the gradi-
ent of some dimensions may be much larger
than others and thus dominate the optimization
process. This problem will lead to sub-optimal
model performance since the model will over-
focus on some features. To solve this problem,
we heuristically propose several simple nor-
malization methods, which forces the statistics
(variance, gradient norm, etc.) to be similar in
each dimension. In experiments, we find that
our proposed methods only boosts model per-
formance on some datasets while do not work
or even hurt the performance on others. We
think our methods heavily depend on the em-
bedding distribution. There is still much work
to do in order to get a distribution-agnostic
method.

1 Introduction

Transformer-based sentence encoders including
BERT (Devlin et al., 2018) and its variants (Joshi
et al., 2019; Liu et al., 2019) have achieved tremen-
dous success on a wide range of natural language
processing tasks. This demonstrates the power of
transfer learning from large pre-trained language
model to the downstream tasks with task-specific
training data. In the current practice of applying
BERT, two model transfer strategies, namely fea-
ture extraction and model fine-tuning, are widely

adopted. The former one represents the input se-
quence as a linear combination of all layers in the
Transformer model, where the weights are learn-
able, while the parameters in transformer remain
freezed during the training stage of the downstream
task. The latter one, as shown to be a more effective
option (Peters et al., 2019), stacks a task-specific
classifier on top of the pre-trained Transformer net-
work, and updates the model parameters in both
the classifier and the Transformer together, towards
optimizing the downstream task with its training
data. Specifically, for sequence classification, the
embedding of the [CLS] token in the last layer of
Transformer is fed into a fully connected network
followed by a softmax classifier.

Despite the successes of fine-tuning pre-trained
Transformers like BERT, the detailed mechanisms
of how knowledge from pre-trained BERT are trans-
ferred to facilitate the downstream tasks is not yet
well understood—e.g., whether the information
stored in [CLS] token embedding can directly
apply to the end task is still unclear. In the pre-
training stage, the sentence encoder is either trained
by next sentence prediction (NSP) or masked lan-
guage model (MLM), which may introduce induc-
tive bias that is irrelevant to end tasks. Also, during
pre-training the input sentences are sampled from
large-scale raw corpora, while in fine-tuning, the
input sentences are sampled from training set of
end tasks. This gap in both training objectives and
input distribution may lead to highly skewed em-
bedding distribution in the [CLS] token. In some
embedding dimensions, the input sentences may be
highly variant, while in other dimensions, the input
sentences may have similar values. This difference
in variance leads to difference in initial gradient –
each embedding dimensions are trained with dif-
ferent pace (magnitude of gradient update), and
some highly-variant dimensions may dominate the
inference stage, and thus hurt the generalization

ability of fine-tuned models.
In this paper, we analyze the distribution of em-

bedding dimensions on BERT model, and propose
several methods to explicitly eliminate their differ-
ence:

• Embedding Normalization. This method
is applied to the forward propagation. We
first estimate the distribution statistics of the
[CLS] embedding on the whole training set,
then use these information to normalize each
training example in fine-tuning.

• Gradient Normalization. This method is
quite similar to batch normalization (Ioffe and
Szegedy, 2015), but is applied to back propa-
gation instead of forward propagation. Given
a batch of gradient, it first calculates the aver-
age gradient norm of each coordinate in the
batch, then scale the gradients towards the av-
erage gradient norm of all coordinates. This
process ends with all coordinates having simi-
lar gradient norms.

We conduct experiments on several GLUE (Wang
et al., 2018) text classification tasks and find that
our method heavily depends on the embedding dis-
tribution.

In the rest of the paper, we first overview the
fine-tuning process of BERT in Section 2, then
present our analysis of biased embedding distri-
bution and its negative impact in Section 3, and
finally introduce a simple yet effective embedding
normalization method in Section 4. We conduct
experiments over several public datasets (as part of
GLUE benchmark) in Section 5.

2 Fine-tuning Pre-trained Encoders for
Text Classification

We consider the task of classifying sentences or
sentence pairs, which aim to assign labels to the
input sequences based on their content. It is one of
the most fundamental problems in natural language
processing. State-of-the-art methods in text classifi-
cation take a pre-training fine-tuning process – they
first train a text encoder on large-scale corpora in a
self-supervised way, then adjust model parameters
on end tasks in order to fit with their objectives.

In this paper, we use BERT as the base encoder,
which can also represent other transformer-based
sentence encoders such as RoBERTa (Liu et al.,
2019) and Albert (Lan et al., 2019). BERT takes

an input sentence and outputs the contextual em-
bedding of each token. It is developed from the
Transformer architecture (Vaswani et al., 2017).
The basic unit of BERT is a series of self attention
blocks, which are stacked by residual connection:

h(l+1) = LayerNorm(hl + SelfAtt(hl)).

Then at the last layer, the hidden state hl is fed into
a tanh layer to get the contextual embedding, where
each embedding dimension is within range [-1, 1]:

h = tanh(Wfh
l + bf),

where Wf ∈ Rdh×dh ,bf ∈ Rdh are pre-trained
model parameters.

To enable BERT to do sentence classification, a
special token [CLS] is padded at the beginning
of the input sentence. There have been several
strategies to pre-train the [CLS] embedding. In
BERT and SpanBERT, the [CLS] token is trained
by next sentence prediction (NSP) objective, which
is a binary classification task for predicting whether
two segments follow each other. Specifically, given
two segments s1, s2 and final [CLS] embedding
h ∈ Rdh , NSP is predicted by:

P(s2 follows s1) =
ew1h+b1

ew1h+b1 + ew2h+b2
,

where w1,w2 ∈ Rdh and b1, b2 ∈ R are trainable
model parameters. While in RoBERTa, the [CLS]
token is trained by masked language model (MLM)
objective, which requires the model to predict the
token of [CLS] from the [CLS] embedding.

To adapt the [CLS] embedding to end tasks, the
pre-trained softmax classifier is replaced by a new
one to predict the task label in the fine-tuning stage:

P(c|h) = Softmax(wch+ bc),

where wc ∈ Rdk , bc ∈ R are random initialized
model parameters. Then, all model parameters are
jointly optimized using the end task data and the
corresponding loss functions.

Although this fine-tuning method is very simple,
it actually achieves the best performance. In some
empirical studies (Sun et al., 2019), people tried
several more advanced fine-tuning strategies, such
as stacking the last 3 layers, weighted the hidden
states in each layer by attention, but none of them
outperforms the above method.

3 Visualizing Embedding Distribution

We conduct systematic analysis over four sequence
classification datasets from GLUE (Wang et al.,
2018) in this section to present the observations
on embedding distribution and discuss its negative
impact on the model performance.

To train neural networks from scratch, a com-
mon practice is to initialize model parameters by
zero-centered i.i.d. random variables. It helps keep
variances of each layer and each dimension in sim-
ilar scale, which keeps the information flowing in
forward propagation. Previous work (Sutskever
et al., 2013) shows that if the model parameters are
not carefully initialized, neural models would reach
sub-optimal performance or even fail to learn.

However, this problem does not get much atten-
tion in the context of fine-tuning neural models.
During fine-tuning, the bottom network is initial-
ized by a pre-trained neural network specialized in
a different task and trained on different data distri-
bution. This dismatch of model parameters may
lead to unexpected optimization step, and thus hurt
the model performance.

3.1 Back Propagation in the Last Two Layers
To better understand the influence of the embedding
distribution, we need to know its role in gradient
calculation. Here, we only focus on the gradient of
the last two layers. Recall the forward propagation
is:

h = tanh(Wfh
l + bf),

y = Softmax(Wch+ bc),

L = −ŷ log(y).

where y, ŷ is the predicted probability and ground
truth, respectively. Then the backward propagation
is calculated by:

∂L
∂h

= (y − ŷ)Wc
T ,

∂L
∂Wc

= (y − ŷ)hT ,

∂L
∂hl

=
(
(y − ŷ)Wc

T ◦ (1− h2)
)
Wf

T ,

∂L
∂Wf

=
(
(y − ŷ)Wc

T ◦ (1− h2)
)
(hl)T .

For weights Wf and Wc, they are either pre-
trained or random-initialized, thus is independent
to the input sentences. However, h and hl, which

Figure 1: Visualization of the distribution of hl on the
training set of different fine-tuning tasks by t-SNE. Dif-
ferent colors stand for different class labels.

are generated by the pre-trained encoder, will play
an important role in training:

• Influence of h. h is highly relevant to the gra-
dient of Wc. One problem is that the gradi-
ent does not necessarily focus on relevant
dimensions. For example, assume that the
first dimension of h follows a random uni-
form distribution within range [0, 1] while the
second dimension is equal to 0.01(y − ŷ).
Then the expected gradients of dimension 1 is
0.5E[(y − ŷ)], while the expected gradients
of dimension 2 is 0.01E[(y − ŷ)2]. That is,
when E[(y − ŷ)] is large enough, the model
is incapable of finding relevant dimensions.

• Influence of hl. hl is highly relevant to h
in the forward propagation. Large hl may
saturate the tanh function, and thus leads to
gradient vanishing (the 1− h2 term in back
propagation).

Above analysis is based on SGD with momentum
and only considers the last two layers, which may
not apply to the real case, where the model is jointly
optimized by Adam optimizer. However, it does
bring some insights on what kind of normalization
is desirable.

3.2 Visualization of hl

To see whether BERT suffers from problems men-
tioned above, we visualize the distribution of
[CLS] embedding of BERT-base on 4 text classifi-
cation datasets, and show the average value of each
embedding dimension in Figure 1 and Figure 2.
We observe that the pre-trained [CLS] embedding
of new datasets fall into two clusters, because the

Figure 2: Average value of each hl dimension on the
training set. Some dimensions have very biased values.

[CLS] embedding is trained with next sentence
prediction (NSP) objective in BERT. This shows
the distribution of [CLS] embedding is skewed by
the NSP task in pre-training. In terms of each em-
bedding dimension, we find that most dimensions
has an average value within 0.5, while some dimen-
sions have very large average values. In forward
propagation, these dimension may saturate the tanh
activation function, and thus lead to gradient van-
ishing problem.

3.3 Visualization of h

To see whether the softmax layer can focus on the
relevant coordinates, we rank the importance of
each [CLS] embedding dimension of BERT-base
by Fisher score on 4 text classification datasets, and
show the variance of each embedding dimension in
Figure 3. The fisher score of the jth dimension is
calculated by:

F
(
xj
)
=

∑c
k=1 nk

(
µjk − µ

j
)2

(σj)2
(1)

where
(
σj
)2

=
∑c

k=1 nk

(
σjk

)2
. This score mea-

sures whether the feature can distinguish different
classes. We observe that in all datasets, the vari-
ances of different dimensions are quite different,
and large variances do not correspond to impor-
tant dimensions generally. For example, in the
MRPC dataset, one dimension has far higher vari-
ance than others, but provides little information
for classification. Thus, with i.i.d. random initial-
ized model parameters, this dimension will be very
likely to dominate model prediction, and thus hurts

Figure 3: Standard deviation of each [CLS] embed-
ding dimension on the training set. The dimensions are
ranked by their importance (computed by Fisher score)
from left to right.

model performance. This unbalanced distributions
of variances motivate us to explicitly re-weigh each
dimension in fine-tuning.

Another phenomenon we notice is that the stan-
dard deviation of datasets naturally falls into 3
types: (1) In MRPC, most dimensions have small
variance, only some dimensions contain large
amounts of noise. (2) In CoLA, SST-2, all dimen-
sions have large variances, and there is no clear
relationship between variance and feature impor-
tance. (3) In RTE (also MNLI, QNLI, WNLI), the
feature variance is positively related to the impor-
tance – the more variant the distribution is, the
more important this feature is. The different types
help us to better understand the difficulty of devel-
oping a universal fine-tuning method – the method
must be able to automatically adjust to different
embedding distribution.

4 Proposed Methods and Variants

To solve the above problem, we propose to ex-
plicitly normalize the embedding of [CLS] in
fine-tuning. Our major objectives are 1) eliminat-
ing large numeric values in embedding to avoid
gradient vanishing and 2) normalizing the gradi-
ents in case of some dimensions dominating the
training process. We divide our methods into
two groups: embedding-based normalization and
gradient-based normalization.

4.1 Embedding Normalization

Embedding normalization is motivated by com-
puter vision. In embedding normalization, we test

the following widely-used data normalization meth-
ods:

• Z-normalization. Z-normalization (Goldin
and Kanellakis, 1995) transforms the input
vector into the output vector whose mean is
near to 0 and standard deviation is near to
1. Specifically, given a set of input vectors
X = {x1,x2, ...,xn}, Z-normalization com-
putes the statistics of the whole dataset and
transform each training example by:

µ = Ex∈X [x] ,

σ2 = Ex∈X
[
(x− µ)2

]
,

x̂i =
xi − µ

σ + ε
, (2)

where µ,σ are vectors representing the mean
and standard deviation of each embedding di-
mension, ε is a hyper-parameter to prevent
small denominators. This method is also
explored in fine-tuning setting (Varno et al.,
2019), where it is theoretically proved to be
effective for linear classifiers.

• Min-Max Normalization. Min-Max normal-
ization linearly transforms each dimension of
the input vectors to a range from -1 to 1:

θ1 = min
x∈X

x

θ2 = max
x∈X

x

x̂i =
2xi − θ1 − θ2
θ2 − θ1 + ε

, (3)

where min and max are element-wise mini-
mum and maximum value of each dimension
on X . By stretching or compressing the em-
bedding, this method ensures that each dimen-
sion is in the same scale and no extreme value
occurs in the training set. This method is com-
monly used in computer vision to preprosess
input images into unit scales.

• L2 normalization. L2 normalization trans-
forms the L2 norm of each embedding dimen-
sion to an average value of 1:

δ2 = Ex∈X
[
x2
]
,

x̂i =
xi

δ + ε
. (4)

This method constrains the L2 norm of each
embedding not to be too large so as to ease
the gradient exploding problem.

Embedding
Normalization

Gradient
Normalization

Figure 4: Comparison between embedding normaliza-
tion and gradient normalization. In embedding normal-
ization, normalization in the forward propagation also
changes the calculation of back propagation. While in
gradient normalization, only the backward propagation
is changed.

4.2 Model Fine-tuning and Prediction with
Normalized Embedding

In fine-tuning, we first get the [CLS] embeddings
of each training example with pre-trained sentence
encoder, then use them to calculate the normaliza-
tion statistics (µ, σ, etc.). In training phase, we
use the normalization statistics to transform the
[CLS] embedding h of input sentences to normal-
ized embedding ĥ, which are taken as inputs for
upper layers. For example, with L2 normalization,
the output of the neural network becomes:

ĥ =
h

δ + ε
,

k = FFN(ĥ),

P(c|h) = Softmax(wck+ bc),

where δ is a normalization statistics. Although
the parameters of the pre-trained model is updated
in fine-tuning, we do not update the normaliza-
tion statistics for simplicity. In prediction phase,
the [CLS] embeddings of new examples are nor-
malized in a similar way, using the normalization
statistics of the training set.

4.3 Gradient Normalization

Gradient normalization is inspired by the weighted
multi-task learning problems. The goal of gradient
normalization is to ensure the gradients of each di-
mension are in similar magnitude. The motivation
is that tuning a set of features generalizes better
than tuning a few features. Specifically, given the
gradient G of a batch B, the normalized gradients

Method / Task MRPC RTE SST-2

BERT-base 88.2 ± 0.5 / 88.1 / 89.2 71.1 ± 1.1 / 71.5 / 72.2 91.9 ± 0.9 / 91.4 / 92.9
BERT-base + Z-normalization 88.6 ± 0.3 / 88.4 / 88.9 69.4 ± 2.0 / 69.7 / 72.2 92.2 ± 0.1 / 92.2 / 92.3
BERT-base + Min-Max normalization 88.7 ± 0.4 / 88.6 / 89.3 72.0 ± 0.5 / 71.8 / 72.9 92.2 ± 0.4 / 92.3 / 92.8
BERT-base + L2 normalization 88.7 ± 0.3 / 88.6 / 89.3 72.4 ± 0.5 / 72.6 / 73.3 92.2 ± 0.3 / 92.2 / 92.5
BERT-base + Gradient Normalization (α = 0.5) 88.5 ± 0.5 / 88.5 / 88.8 72.5 ± 0.9 / 72.2 / 74.0 92.2 ± 0.4 / 92.3 / 92.7
BERT-base + Gradient Normalization (α = 1.0) 88.7 ± 0.5 / 88.8 / 89.3 72.4 ± 2.0 / 71.8 / 74.7 92.2 ± 0.4 / 92.3 / 92.8

BERT-large-wwm 88.4 ± 0.8 / 88.9 / 89.1 73.4 ± 1.8 / 72.9 / 75.8 94.4 ± 0.2 / 94.4 / 94.6
BERT-large-wwm + Z-normalization 88.1 ± 1.3 / 88.6 / 89.3 74.4 ± 1.7 / 74.7 / 76.2 93.7 ± 0.3 / 93.7 / 93.9
BERT-large-wwm + Min-Max normalization 88.8 ± 0.5 / 88.9 / 89.5 73.7 ± 1.4 / 74.0 / 74.7 93.7 ± 0.3 / 93.5 / 94.0
BERT-large-wwm + L2 normalization 88.6 ± 1.0 / 88.8 / 90.0 74.8 ± 1.2 / 74.7 / 76.2 94.3 ± 0.2 / 94.4 / 94.5

Table 1: Results (mean±std, median, and max) on the dev sets of GLUE from 5 runs with different random seeds.

is calculate by:

µ = Eg∈G [||g||2] ,
θ = Avg(µ),

γ =

(
θ

µ+ ε

)α
g′ = gγ.

Where α is a hyper parameter that controls the
strength of gradient normalization. When α = 1,
the gradients of all coordinates are forced to be
the same. When α = 0, the gradient normaliza-
tion is turned off. Different from embedding nor-
malization, the gradient statistics are dynamically
computed from the current batch.

4.4 Comparison between Embedding
Normalization and Gradient
Normalization

The major difference between these two methods
is shown in Figure 4. Embedding normalization
changes both forward and backward propagation,
while gradient normalization only changes the back
propagation. This makes gradient normalization
a better choice, since it can modify the model in
a more “controlled” way. The other reason is that
in embedding normalization, it is hard to take the
random-initialized weight Wc into account, which
also has a big impact on the model performance.
While in gradient normalization, Wc appears in
the gradient, thus our normalization also depends
on the weight initialization.

5 Experiments

5.1 Experiment Settings

We implemented our methods on a BERT imple-
mentation 1. The model is optimized with AdamW

1https://github.com/huggingface/transformers

Method / Task MNLI-m MNLI-mm QNLI

BERT-base 84.21 / 84.29 84.56 / 84.79 91.25 / 91.38
Z-normalization 84.01 / 84.05 84.67 / 84.91 91.14 / 91.34
Min-Max normalization 83.79 / 83.89 84.27 / 84.40 91.27 / 91.36
L2 normalization 84.52 / 84.66 84.91 / 85.40 91.38 / 91.58

Table 2: Results (median, max) on the dev sets from 3
runs with different random seeds. We use BERT-base
as the sentence encoder.

optimizer using a learning rate of 5e-5 for BERT-
base and 2e-5 for BERT-large. The learning rate is
scheduled by a linear warmup for the first 6% of
steps followed by a linear decay to 0. The model
is fine-tuned for 10 epochs on each task. We apply
early stopping according to task-specific metrics
on the dev set. Other hyper-parameters are same as
pre-training.

5.2 Main Results

The experiment results are presented in Table 1.
Overall, our methods achieve consistent improve-
ments over fine-tuning with the BERT-base encoder.
Among three normalization methods, L2 normal-
ization and gradient normalization is the most ef-
fective one, while Min-Max normalization and Z-
normalization sometimes given worse results. We
think it is because that some dimensions have very
small variance. Z-normalization and Min-Max nor-
malization may greatly stretch the embedding dis-
tribution and amplify the noise in embedding. It
can be solved with a more careful selection of ε.
With the BERT-large encoder, L2 normalization
still helps, but the performance gains are much less.
We also conduct experiments on MNLI (433k sen-
tences) and QNLI (130k sentences) datasets with
the BERT-base encoder. Results are presented in
Table 2. Again, L2 normalization improves model
performance on both datasets.

6 Conclusion

In this paper, we analyzed the embedding distri-
bution of [CLS] token in pre-trained sentence en-
coders. We showed that this problem may lead
to issues such as gradient vanishing and dominate
features. To solve the problem, we proposed sev-
eral normalization techniques, which demonstrate
their effectiveness on the BERT-base model. Future
work includes finding the theoretical foundations
of our methods, and develop a method that works
for all models and datasets.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dina Q Goldin and Paris C Kanellakis. 1995. On simi-
larity queries for time-series data: constraint specifi-
cation and implementation. In International Confer-
ence on Principles and Practice of Constraint Pro-
gramming, pages 137–153. Springer.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
arXiv preprint arXiv:1905.05583.

Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. 2013. On the importance of initial-
ization and momentum in deep learning. In Interna-
tional conference on machine learning, pages 1139–
1147.

Farshid Varno, Behrouz Haji Soleimani, Marzie
Saghayi, Lisa Di Jorio, and Stan Matwin. 2019. Ef-
ficient neural task adaptation by maximum entropy
initialization. arXiv preprint arXiv:1905.10698.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

