
Final Report on Multi-hop Reading Comprehension

Woojeong Jin
University of Southern California
woojeong.jin@usc.edu

Abstract

Learning multi-hop reasoning has been a key
challenge for reading comprehension models.
Ideally, a model should not be able to perform
well on a multi-hop question answering task
without doing multi-hop reasoning. In this fi-
nal report, we investigate works on multi-hop
reading comprehension including datasets and
models. Furthermore, we propose MRCNET,
which is composed of two modules: a rele-
vance module and an answering module. The
relevance module finds the two most relevant
paragraphs among given 10 paragraphs, and
the answering module finds answers given the
two relevant paragraphs. Our results on this
model shows the effectiveness on finding rele-
vant articles and a multi-hop question answer-
ing task.

1 Introduction

Multi-hop reading comprehension (RC) or ques-
tion answering requires the aggregation of evi-
dence across several paragraphs to answer a ques-
tion. Table 1 shows an example of single-hop
and multi-hop questions. A single-hop question
“Which player is named 2015 Diamond Head
Classic’s MVP?” requires finding the player who
won MVP from one paragraph. However, a multi-
hop question requires further reasoning, which is
first finding the player, and then finding the team
that player plays for from another paragraph.

In this project, we propose MRCNET, a system
for multi-hop RC, which consists two modules: a
relevance module and an answering module. The
relevance module learns relevance of each para-
graph to find the most relevant paragraphs, while
the answering module learns how to find answers
given the paragraphs. The relevance module pro-
vides relevance scores for each paragraphs and the
paragraphs are ranked by the score. We assume
that answers are in the top-two ranked paragraphs.

Single-hop
Which player is named 2015

Diamond Head Classic’s MVP?

Multi-hop
Which team does the player
named 2015 Diamond Head

Classic’s MVP play for?

Table 1: An example of single-hop and multi-hop ques-
tions from HOTPOTQA. A multi-hop question requires
multi-hop reasoning.

Given the two paragraphs, the answering module
finds the most plausible answers.

Our experiments show effectiveness of the an-
swering module in MRCNET. Unfortunately, we
do not have results of our MRCNET. In this mid-
term report, we study the datasets and previous
work.

2 Dataset

Before diving into previous work, we first exam-
ine the datasets (Dua et al., 2019; Yang et al.,
2018; Welbl et al., 2018a; Talmor and Berant,
2018). Among them, we study two datasets: Wik-
iHop (Welbl et al., 2018a) and HOTPOTQA (Yang
et al., 2018). One key difference is that HotpotQA
is span-based (the answer is a span of the passage)
while WikiHop is multiple-choice.

WikiHop (Welbl et al., 2018b). Wikihop is
English dataset designed for text understanding
across multiple documents. The dataset consists
of 40k+ questions, answers, and passages, where
each passage consists of several documents col-
lected from Wikipedia. Questions are posed as a
query of a relation r followed by a head entity h,
with the task being to find the tail entity t from a
set of entity candidates E. Annotators followed
links between documents and were required to use
multiple documents to get the answer.

HOTPOTQA (Yang et al., 2018). HOTPOTQA



is a dataset with 113k English Wikipedia-based
question-answer pairs. The questions are diverse,
falling into several categories: inferring the bridge
entity, intersection, and comparison. They also in-
troduce a subset of yes/no questions in comparison
questions. All require finding and reasoning over
multiple supporting documents to answer. Mod-
els should choose answers by selecting variable-
length spans from the documents. Sentences rel-
evant to finding the answer are annotated in the
dataset as “supporting facts” so models can use
these at training time as well.

In this project, we focus and experiment on the
HOTPOTQA dataset.

3 Related Work

In this section, we review the related work on
HOTPOTQA (Min et al., 2019b; Xiao et al., 2019;
Nishida et al., 2019; Ding et al., 2019; Feld-
man and El-Yaniv, 2019). Before digging into
each method, Multi-hop reading comprehension
has two benchmark settings on HOTPOTQA: dis-
tractor and full wiki (open-domain) setting. In
the first setting, to challenge the model to find
the true supporting facts in the presence of noice,
there are 8 paragraphs from Wikipedia as distrac-
tors, and 2 gold paragraphs, which contain an-
swers and supporting facts. The second setting
truly test the model’s ability to locate relevant facts
as well as reasoning about them by requiring it
to answer the question given the first paragraphs
of all Wikipedia articles without gold paragraphs
specified.

We divide the previous work into two groups:
models for the distractor setting (Xiao et al., 2019;
Min et al., 2019b; Nishida et al., 2019), models
for the full wiki (open-domain) setting (Min et al.,
2019b; Ding et al., 2019; Feldman and El-Yaniv,
2019). Among these work, Xiao et al. (2019);
Ding et al. (2019) use entity-level Graph Neural
Network (GNN) across multiple paragraphs.

Xiao et al. (2019) proposed the Dynamically
Fused Graph Network (DFGN). Their intuition is
drawn from the human reasoning process for QA.
One starts from an entity of interest in the query,
focuses on the words surrounding the start enti-
ties, connects to some related entity either found
in the neighborhood or linked by the same sur-
face mention, repeats the step to form a reasoning
chain, and lands on some entity or snippets likely
to be the answer. More specifically, they first find

a paragraph and construct an entity graph. From
these paragraph and graph, they find an answer.

Min et al. (2019b) proposed DecompRC that
learns to break compositional multi-hop questions
into simpler, single-hop sub-questions using spans
from the original question. First, DecompRC de-
composes the original, multi-hop question into
several single-hop sub-questions according to a
few reasoning types in parallel, based on span
predictions. Then, for every reasoning types De-
compRC leverages a single-hop reading compre-
hension model to answer each sub-question, and
combines the answers according to the reasoning
type. Finally, it leverages a decomposition scorer
to judge which decomposition is the most suitable,
and outputs the answer from that decomposition as
the final answer.

Nishida et al. (2019) proposed Query Focused
Extractor (QFE) model for evidence extraction. So
they focus on the evidence extraction based on the
previous work (Yang et al., 2018). QFE is inspired
by extractive summarization models; compared
with the existing method, which extracts each ev-
idence sentence independently, it sequentially ex-
tracts evidence sentences by using an RNN with
an attention mechanism on the question sentence.
It enables QFE to consider the dependency among
the evidence sentences and cover important infor-
mation in the question sentence.

The following work is for the full wiki setting.
Thus, finding relevant paragraphs is crucial for
their performances.

Ding et al. (2019) proposed Cognitive Graph
QA (CogQA), which comprises System 1 and 2
modules. System 1 extracts question-relevant en-
tities and answer candidates from paragraphs and
encodes their semantic information. Extracted en-
tities are organized as a cognitive graph. System 2
conducts the reasoning procedure over the graph,
and collects clues to guide System 1 to better ex-
tract next-hop entities. The above process is iter-
ated until all possible answers are found, and then
the final answer is chosen based on reasoning re-
sults from System 2.

Feldman and El-Yaniv (2019) proposed MUP-
PET (multi-hop paragraph retrieval) which relies
on the following basic scheme consisting of two
main components: (a) a paragraph and question
encoder, and (b) a paragraph reader. The encoder
is trained to encode paragraphs into d-dimensional
vectors, and to encode questions into search vec-



Question

Paragraph1

Question

Paragraph2

Question

Paragraph10

…

Relevance
Module

Relevance
Module

Relevance
Module

!(#$%$&'()$)

!(#$%$&'()$)

!(#$%$&'()$)

Figure 1: The relevance module learns to find how rel-
evant each paragraph to the question. From the proba-
bilities of relevance we can pick the two most relevant
paragraphs.

tors in the same vector space. Then a maximum
inner product search algorithm is applied to find
the most similar paragraphs to a given question.
The most similar paragraphs are then passed to the
paragraph reader, and extracts the most probable
answer to the question.

The above work showed good performances,
but they are out of date. Readers can find the
better models on the leaderboard of HOTPOTQA
(https://hotpotqa.github.io).

Temporal Question Answering. We review re-
lated work on temporal question answering. A
temporal question is any question, which contains
a temporal expression, a temporal signal, or whose
answer is of temporal nature. For example, ”Who
won the state of texas in 2008?” and ”Who was
the president after John F. Kennedy died?” are
temporal questions. There are only a few work
on the temporal question answering task: (Sun
et al., 2018; Jia et al., 2018). To deal with tem-
poral and causal relations, Sun et al. (2018) makes
an event graph which is a directed graph where
vertices represent events which are connected by
edges. With generated graphs, they seek to find
ordering of events and answer the question. On
the other hand, Jia et al. (2018) studies temporal
question answering on Knowledge Bases. They
first decompose and rewrite the question into non-
temporal sub-questions and temporal constraints.
Then, they obtain answers and dates for temporal
constraints from Knowledge Bases.

Question

Paragraph1 Answering
Module Span/yes/no

Paragraph2

Figure 2: The answering module seeks to find answers
for the question. The answer can be answer span,
“yes”, or “no.”

4 Proposed Method

4.1 Overview
In multi-hop reading comprehension, a system
answers a question over a collection of para-
graphs by combining evidence from multiple para-
graphs. HOTPOTQA dataset has two gold para-
graphs which have supporting evidences and an-
swers for the given questions among 10 given
paragraphs. The key idea of our method is that
we need to find the two gold paragraphs first and
then concatenate the paragraphs. Answering mod-
ule will find answers from the paragraphs.

We propose MRCNET for multi-hop reading
comprehension via two modules: a relevance
module and an answering module. MRCNET an-
swers questions through a two step process:

1. First, a relevance module in MRCNET finds
the two most relevant paragraphs. The mod-
ule takes the question and each paragraph as
input, and provides a relevance score which
is a probability of containing supporting facts
or an answer in the paragraph.

2. An answering module assumes that the two
relevant paragraphs have answers. The ques-
tion and the two paragraphs will be given to
the module and the module finds an answer
for the question.

Details of each module will be described in Sec-
tions 4.2 (the relevance module) and 4.3 (the an-
swering module).

4.2 Relevance Module
The relevance module scores each paragraph for
the given question. In Figure 1, the question and
each paragraph are given to the module. We adopt
BERT (Devlin et al., 2018) and another fully con-
nected layer followed by sigmoid function to ob-
tain probabilities of relevance.

The model receives a question Q = [q1, ..., qm]
and a single paragraph P = [p1, ..., pn] as in-

https://hotpotqa.github.io


put. Following (Devlin et al., 2018), S =
[[CLS], q1, ..., qm, [SEP], p1, ..., pn] where [CLS]
is a special symbol added in front of every input
example, and [SEP] is a special separator token to
separate questions and answers, is fed into BERT:

S′ = f(S) ∈ Rh×(m+n+2), (1)

where f is the BERT model and h is the hidden
dimension of BERT. Next, a fully connected layer
with a sigmoid function is applied on the output of
the [CLS] token to generate probabilities:

P (yrelevance) = σ(W1 · S′
[CLS]), (2)

where yrelevance indicates the paragraph is relevant,
σ is a sigmoid function, and W1 ∈ Rh×1.

The relevance module yields probability of rel-
evance and from the probabilities we can pick top-
2 paragraphs which will be used in the answering
module. This module is optimized by binary cross
entropy loss.

4.3 Answering Module

The answering module finds answers given two
paragraphs. In Figure 2, the answering module re-
ceives the question and two paragraphs as input,
and it yields the answer (span, yes, or no).

Similarly to the relevance module, the answer-
ing module uses BERT to get hidden representa-
tions of each tokens S′. On top of these repre-
sentations, a classifiers uses max-pooling and fully
connected layer to generate three scalars:

[yspan, yyes, yno] = softmax(W2 · maxpool(S′)),
(3)

where yspan, yyes, and yno indicate the answer is
either a span, yes, or no, and W2 ∈ Rh×3. If
the answer is span, then the module needs to find
an answer span. The answer span is obtained sep-
arately following (Devlin et al., 2018):

P (Ti = start) = softmax(W3 · S′
i) (4)

P (Ti = end) = softmax(W4 · S′
i), (5)

where W3,W4 ∈ Rh×1.

4.4 Loss functions

To train the relevance and answering modules, we
define loss functions. We first define a loss func-
tion for the relevance module which is binary cross
entropy loss.

Model EM F1

BiDAF - 58.28
Single-paragraph BERT - 67.08
DecompRC 55.20 69.63
DFGN 56.31 69.69
MRCNET 62.45 75.25

Table 2: Exact Match and F1 scores on HOTPOTQA.
Our MRCNET outperforms other competitors.

Loss for relevance module. Given relevant (pos-
itive) paragraphs and irrelevant (negative) para-
graphs, we can define a binary cross entropy func-
tion as follows:

L1 = −
!

y∈Pos

logP (y)−
!

y∈Neg

(1− logP (y)),

(6)
where P (y) is the probability of whether the para-
graph is relevant or not.
Loss for answering module. The answering
module has two loss functions: one is for finding
answer type (span, yes, no) (L2), the other one
is for finding answer spans (L3). If the answer
type is span, then the module needs to find an-
swer spans.

Loss function for finding answer type as fol-
lows:

L2 =−
!

y∈span
logP span(y)

−
!

y∈yes
logP yes(y)−

!

y∈no
logPno(y),

where P span is the probability of span, P yes is the
probability of yes, and Pno is the probability of
no.

If the answer type is span, we train the follow-
ing loss function:

L3 = −
!

y∈start
logP start(y)−

!

y∈end
logP end(y).

(7)
Then, total loss will be:

Ltot = L1 + L2 + L3 (8)

5 Experiments

In this section, we evaluate our proposed method
on HOTPOTQA (Yang et al., 2018), a recently in-
troduced multi-hop RC dataset over Wikipedia ar-
ticles. We evaluate our method on a distractor set-
ting which contains the question and a collection



of 10 paragraphs: 2 paragraphs (gold paragraphs)
are provided to crowd workers to write a multi-
hop questions, and 8 distractor paragraphs are col-
lected separately via TF-IDF between the question
and the paragraph. The gold paragraphs contain
supporting evidences and answers. In this experi-
ment, we seek to find answers and test on the dev
set.

5.1 Experimental Setup

Evaluation Metrics. We use two different metrics
to evaluate model accuracy We use Exact Match
and (Macro-averaged) F1 score. The exact match
metric measures the percentage of predictions that
match the ground truth answer exactly. The F1
scores measure the average overlap between the
prediction and ground truth answer. The predic-
tion and ground truth are treated as bags of tokens.
With these bags of tokens, we compute their F1
scores.

Implementation Details. We use the cased ver-
sion of BERT Tokenizer (Devlin et al., 2018) to
tokenize all passages and questions. In the encod-
ing stage, we also use a pre-trained BERT model
as the encoder, and all the hidden state dimensions
are set to 768. For optimization, we use Adam
Optimizer (Kingma and Ba, 2014) with an initial
learning rate of 1e−4.

Baselines. We compare our approach to pub-
lished baselines: BiDAF (Seo et al., 2016), Single-
paragraph BERT (Min et al., 2019a), Decom-
pRC (Min et al., 2019b), and DFGN (Xiao et al.,
2019). We test our method and baselines on a val-
idation set since we couldn’t get the test dataset.

5.2 Results
Table 2 shows the performances of our proposed
method, MRCNET. Our method significantly out-
performs other baselines. MRCNET shows 6%
point improvement (EM) and 5% point improve-
ment over DFGN. However, there are more meth-
ods on the leaderboard1. Some methods shows
much better performances over the baselines, but
we didn’t include the results since they do not re-
lease results on a validation set.

5.3 Ablation Study
In this section, we evaluate the performances of
the answering module and the relevance module
in MRCNET.

1https://hotpotqa.github.io

Model EM F1

DFGN with gold paragraphs 55.67 69.15
MRCNET with gold paragraphs 62.57 76.51
MRCNET with ten paragraphs 54.58 67.22
MRCNET 62.45 75.25

Table 3: Exact Match and F1 scores on HOT-
POTQA. Our MRCNET with gold paragraphs outper-
forms DFGN with gold paragraphs. With ten para-
graphs, MRCNET significantly degrades the perfor-
mance. MRCNET (with our relevance module) shows
the similar performance to MRCNET with gold para-
graphs.

Model accuracy

Relevance module 96.44
Random predictor 48.32

Table 4: Accuracy of finding relevant articles. Two
paragraphs out of ten paragraphs are relevant.

Answering Module. Given two gold paragraphs,
we study the performance of the module. In Ta-
ble 3, our propose method with two gold para-
graphs shows higher performances than DFGN
with two gold paragraphs. It shows 7% perfor-
mances gains over the baseline, which shows the
effectiveness of our method. This suggests that our
answering module effectively finds answer spans,
yes, or no. Also, MRCNET with ten paragraphs
underperforms MRCNET with gold paragraphs.
This means that finding most relevant paragraphs
is important in performances.
Relevance Module. Our relevance module in
MRCNET finds most relevant paragraphs given
ten paragraphs. It is crucial to find appropriate
paragraphs as shown in Table 3. Compared to
MRCNET with ten paragraphs, MRCNET shows
8% performances gains in EM and F1. Also, MR-
CNET shows comparable results to MRCNET with
gold paragraphs. Table 4 shows the performance
of the relevance module in finding relevant arti-
cles. It achieves 96.44% accuracy, while the ran-
dom predict shows 48.32% accurcy, which is huge
improvement.

6 Conclusion

In this final report, we proposed MRCNET, which
has two modules: the relevance module and the
answering module. Our proposed method outper-
forms other baselines. However, we didn’t include



state of the arts since they don’t release results on
a validation set. Each module shows effectiveness
on each experiment. Future work includes finding
the most relevant sentences to give finer-grained
evidences.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang,
and Jie Tang. 2019. Cognitive graph for multi-
hop reading comprehension at scale. arXiv preprint
arXiv:1905.05460.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.
arXiv preprint arXiv:1906.06606.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy,
Jannik Strötgen, and Gerhard Weikum. 2018.
Tequila: Temporal question answering over knowl-
edge bases. In Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge
Management, pages 1807–1810. ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sewon Min, Eric Wallace, Sameer Singh, Matt
Gardner, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2019a. Compositional questions do not
necessitate multi-hop reasoning. arXiv preprint
arXiv:1906.02900.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and
Hannaneh Hajishirzi. 2019b. Multi-hop reading
comprehension through question decomposition and
rescoring. arXiv preprint arXiv:1906.02916.

Kosuke Nishida, Kyosuke Nishida, Masaaki Nagata,
Atsushi Otsuka, Itsumi Saito, Hisako Asano, and
Junji Tomita. 2019. Answering while summarizing:
Multi-task learning for multi-hop qa with evidence
extraction. arXiv preprint arXiv:1905.08511.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Yawei Sun, Gong Cheng, and Yuzhong Qu. 2018.
Reading comprehension with graph-based temporal-
casual reasoning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 806–817.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018a. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, 6:287–302.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018b. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, 6:287–302.

Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. arXiv
preprint arXiv:1905.06933.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

https://doi.org/10.1162/tacl_a_00021

