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Abstract

In this project, we study visually grounded
concept learning from streaming data. We
setup an environment to simulate the scenario
when the visual data comes in non-stationary
distribution over time, similar to the environ-
ment where children see and learn. We focus
on online continual learning algorithms, where
the goal is to alleviate catastrophic forgetting,
defined as the degraded performance on previ-
ously learned tasks. We experiment with exist-
ing replay buffer based continual learning al-
gorithms, and also experiment with a regular-
ization based approach which is free of replay
buffers. The latter approach learns a Hypernet-
work to generate parameters for downstream
classifiers according to learned task embed-
dings and regularize the change of generated
parameters at training. Experiments show that
the replay buffer based approaches yield most
competitive resistance to catastrophic forget-
ting, while the Hypernetwork based approach
is also effective without storing any prior in-
put examples. We also propose an approach to
build connects between task embeddings and
word embeddings to capture conceptual simi-
larity of tasks.

1 Introduction

Language is visually grounded in experience.
Children language learning cannot be separated
from their environments: for example, children
learn nouns to refer to visual objects, and learn ad-
jectives in order to describe different objects. The
natural compositionality of visual objects (e.g. an
apple that appears small and red) help children to
acquire compositional semantics in language (e.g.
a small red apple) with light effort. By looking at
some examples, children learn what “small” and
“red” means, which enable them to imagine im-
ages from text, or describe new objects. It in-
spires researchers to incorporate visual informa-

tion into neural networks for more robust language
learning of models. Learning multimodal seman-
tics of language is shown to be helpful to various
downstream tasks such as image captioning, vi-
sually grounded question answering, and visually
grounded commonsense reasoning.

In this project, we study visually grounded lan-
guage learning from streaming data. The setting is
more practical, where the model can learn from
massive amount of streaming data without stor-
ing them. However, it introduces additional chal-
lenges, such as catastrophic forgetting, more dif-
ficult generalization, and that the model looks at
data only once. Given these settings, we study the
problem as an online continual learning problem,
where the distribution of the data in the stream
may change over time.

The organization of the report is as follows.
First, we formally introduce the task of continual
learning and summarize existing continual learn-
ing algorithms. Next, we summarize existing
works on multi-modal language learning. Then we
introduce preliminary experimental results and fu-
ture research plan.

2 Formulation and Methods

2.1 Task formulation

Continual learning assumes the input-label pairs
(X,y) arrive in a sequential manner. The data is
drawn from a task distribution 7", which itself also
changes over time. The key problem that con-
tinual learning algorithms try to handle is catas-
trophic forgetting. There are two types of forget-
ting, namely:

o Class forgetting. When the model was not
presented with examples with certain labels
for a long time, the model may never output
the label again.



e Degraded Generalization. When the dis-
tribution of X regarding a certain label y
change a lot, the model may fail to predict
correct labels for input X from the old distri-
bution.

In prior literature, these two challenges cor-
responds to two continual learning scenarios,
namely class-incremental learning and domain-
incremental learning (Hsu et al., 2018). In this
project, we focus on domain incremental learning,
where we handle the problem of degraded classi-
fication performance for old tasks in the stream.

We simplify our downstream task so that we
could focus on online continual learning algo-
rithms: given a continual stream of images, each
task is to classify the color attribute of one given
object. The object distribution in the stream
changes over time and some old objects may never
be visited again. The model is required to main-
tain classification accuracy on old objects while
learning on new objects. Our base classifier em-
ploys ResNet to extract visual features, and per-
form classification over colors.

2.2 Replay Buffer based Continual Learning
Algorithms

We first study replay buffer based continual learn-
ing algorithms. These algorithms maintains a fix-
sized replay buffer to store portion of prior input
examples. We employ the reservoir sampling tech-
niques (Riemer et al., 2019) to select samples to
store in the replay buffer. The sampling ensures
that at any point the probability of drawing an ex-
ample from the buffer is the same as drawing a
sample from all previously seen data.

We employ Experience Replay (ER) and Av-
erage Gradient Episodic Memory (AGEM) algo-
rithms to utilize stored examples at training.

Experience Replay. Experience Replay (ER)
draws a sample mini-batch from the replay buffer
and attaches the mini-batch to the current training
batch from the data stream.

Average Gradient Episodic Memory. Average
Gradient Episodic Memory is a fast approximation
of Gradient Episodic Memory (GEM) (Lopez-Paz
and Ranzato, 2017). It constrains that the gradient
update of parameters do not interfere with any ex-
ample in the memory. Whenever the model eval-
uate gradient g for the parameters on a mini-batch
from the stream, the model projects the gradient to

a direction in which the dot product with any gra-
dient g evaluated on the replay buffer is greater
or equal to zero. The projection is solved by find-
ing a projected gradient g by solving the following
optimization problem.

minimize ||g — g||

1
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where m is the size of the replay buffer. The
formulation of preventing interference is plausi-
ble but the constraints are overly strong and solv-
ing this quadratic program at very integration of
model training is not effective. Average Gradi-
ent Episodic Memory (AGEM) (Chaudhry et al.,
2019a) tackles this problem by instead restrict-
ing the gradient update § do not interfere with
the average gradient g,.y evaluated on the replay
buffer. It removes the need for solving QP prob-
lem, and is highly effective while maintaining al-
most the same performance as GEM. The opti-
mization problem is formally written as,

g — gl|
s.t. ngref >0

minimize
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The problem has an closed form optimal solution
for the projected gradient g, via:

ngref

Gref (3)
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2.3 Replay-free Approaches for Continual
Learning

While replay buffer based approaches has shown
promising performance at alleviating catastrophic
forgetting, the performance is limited by the size
of the replay buffer, which is potentially not scal-
able. Some researchers also argue that storing
prior examples bypass the problem of improving
inherent ability of long term memory of models.
We explore online continual learning algorithms
which do not requires a replay buffer. We study a
state-of-the-art Hypernet based continual learning
algorithm (von Oswald et al., 2019) which falls in
this category.

Figure 1 shows the model architecture. Un-
like ordinary neural network, the Hypernet model
is trained to generate weights for another model.
The classifier weight generator takes as input the
object embedding, and generate classifier weights
for color classification regarding that object. The
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Figure 1: Hypernets for attribute classification. To perform classification, the classifier weight generator takes
as input the embedding of the word (“T-shirt”) and generate corresponding classification weights. The attribute
classifier classify the image by loading the weights generated by classifiers.

weight generator is implemented as a 3-layer
MLP.

To prevent catastrophic forgetting, the model
directly regularizes the change of generated clas-
sifier weights from the most recent snapshot of
the generated weights for each task at the weight
space. Denote the parameter of the weight genera-
tor f(-) as 0y, and the task embedding for the ¢-th
task as e(t), and the current task as 7", the model
penalize the L2 distance between generated clas-
sifier weights and the snapshot of the generated
weight (noted as ©%), after the estimated param-
eter update ©; + AO. Note that at any point
of training, the model keeps only one most re-
cent snapshot of the generated weights, which is
the main difference from replay buffers that store
much earlier weights or examples. The additional
regularization term added to the classifier loss is
formally written as follows,

T-1

Lreg =Y _|lfn(e™,05)—fu(e™, 0,+A0,)|?
t=1
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2.4 Learning Task Representations for
Continual Learning

Since Hypernets generates classifier parameters
according to task embeddings, similar parameters
will be generated for similar tasks. The task em-
beddings will be gradually learned to capture task
similarity. However, prior research has not fully
exploit the task embedding space, simply keeping
it fixed after training each task. Our key intuition
is that contextually similar concepts (e.g. nouns)
implies task similarity for downstream visual tasks
(e.g. attribute classification for one given ob-
ject). Given that hypernets generate model pa-

rameters according to task representations, we ex-
pect the generated parameters are similar for sim-
ilar conepts. To test our hypothesis, we experi-
ment with initializing the task embeddings in the
Hypernets as Glove word embeddings. Glove em-
beddings can be regarded as an upperbound of the
quality of word representations that can be learned
from textual contexts associated with images (e.g.
captions) in the dataset. This approach potentially
reveal whether learning task representation from
text associated with images will be helpful.

3 Experiments

3.1 Experimental Setup

We use the GQA (Hudson and Manning, 2019)
dataset for experiments. GQA is a large visual
question answering dataset with scene graph and
bounding box annoations. Each bounding box is
associated with object labels and possibly some
attribute labels. Figure 4 show an example in the
GQA dataset. We train and test the model with
most frequent 100 objects in the GQA dataset.
We take the next 100 objects as “novel” objects
to test on. For each object, we selected 80% of
it associated colors as “seen” colors of that ob-
ject for training and testing, the remaining 20% as
“novel” colors of the object for testing only. We
crop the image regions according to bounding box
annotations, and feed into a ResNet-34 (He et al.,
2016) classifier to make predictions. We plot the
attribute prediction curve in Figures 2 and 3 in
two task distribution settings, namely the station-
ary stream and non-stationary stream. In the non-
stationary setting, the data stream is sorted by the
objects.
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Figure 2: Online continual color classification accuracy curves at non-stationary setting. xz-axis notes for training
instances seen so far in the stream. We report the performance of Vanilla, ER, and AGEM methods in green,
orange, and blue curves respectively. The red dotted line notes for the performance obtained in batch learning

setting (upper-bound).
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Figure 3: Online continual color classification accuracy curves at stationary setting. x-axis notes for training
instances seen so far in the stream. We report the performance of Vanilla, ER, and AGEM methods in green,
orange, and blue curves respectively. The red dotted line notes for the performance obtained in batch learning

setting (upper-bound).
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Figure 4: An example in the GQA dataset. At current
stage, we only utilize bound box, object and color at-
tribute annotations.

3.2 Results of Continual Learning
Algorithms with Replay Buffers

In both of settings the data are visited only once.
We plot the accuracy achieved by standard multi-

epoch training setting in dotted lines in all the fig-
ures. We report the accuracy on seen combina-
tion of objects and attributes, novel combination
of seen objects and attributes, and novel objects.
The plot compares three continual learning algo-
rithms, namely Vanilla, AGEM, and ER. A replay
buffer with a capacity of 100 examples if used by
default.

The results show that the model achieve only at
most 72% accuracy for color attribute prediction,
which is surprising, as color is one of the most
easy visual concepts. We regard the performance
as a consequence of noisy annotation. Neverthe-
less, the degraded performance on novel combina-
tions and novel objects imply the concept of colors
do not generalize perfectly to the inputs out of the
training data distribution.

The continual learning algorithms, namely ER
and AGEM, improve the accuracy on seen com-
binations by a large margin in non-stationary set-



ting. It also improves the accuracy on novel ob-
jects by a moderate amount in non-stationary set-
ting. However, it does not show improvement for
novel combinations. Actually, the performance of
the model in non-stationary setting is equally bad
compared to the stationary setting. It implies the
compositional generalization is itself a challeng-
ing task even in stationary setting. We also see in
stationary setting, no online continual learning al-
gorithms make difference. It implies that continual
learning algorithms do not naturally improve gen-
eralization of concepts in the stationary setting.

We also test the performance with different re-
play buffer size. The experiments show that the
performance improves as the capacity of the re-
play buffer increases. We notice that even for a
small replay buffer, e.g., 20 examples in total, al-
ready make a lot of difference.

3.3 Results of Hypernets

Table 1 shows experimental results on Hypernets.
At our prelimiary experiments on Hypernets, we
fix the feature extractor weights as (1) that pre-
trained at offline setting (noted as Offline classifier
features), or (2) that pretrained on Imagenet clas-
sification, noted as Imagenet features. We use the
classifier weight generator to generate weights for
final 3 layers. We also assume ground truth ob-
jects are provided and feed the object labels into
all comparators. Table 4 shows comparison be-
tween Hypernets, Vanilla, and ER in this setting.
Experiments show while Hypernets performs not
as well as ER, it outperforms the method where no
regularization is imposed. It implies that the regu-
larization of Hypernets indeed help. However, we
find that Glove features are by no means helpful to
the performance. It is probably because the disim-
ilarity between text embedding space and the task
embedding space. Also, since the generated pa-
rameters are very high-dimensinal, similarity en-
coded in the embedding space may be diluted in
this case, i.e., similar task embeddings to not en-
sures similar classifiers at functiomn space.

We also find that the learning rate affects the
performance in online continual learning signifi-
cantly. For example, when the learning rate is in-
creased from the default value 5e — 5 to 2e — 4,
the performance of Hypernets decrease to 0.522,
while the performance of Hypernets + Glove de-
crease to 0.455. However, the classification ac-
curacy of the offline classifer remained the same.

We could conjecture that the difference orginates
from the online setting - the model is trained for
next tasks when they are not converge on previous
tasks with a small learning rate. As a result, the
model could slowly learn classifiers that are gener-
alizable to all the objects. In contrast, with a high
learning rate, the model learn rapidly on new tasks
and meanwhile forget rapidly on old tasks. This
should remind us we should be careful about the
“online” setting, as prior continual learning litera-
tures usually assume the model is trained on tasks
until convergence. In these literatures, the tasks
come in a stream, but the model is trained in batch
seteting within each task.

3.4 Discussion

We list some conclusion of the experiments, and
discuss the next steps of the research in this sec-
tion.

Generalization of concepts is close between of-
fline and online settings. From Figure 2, we see
the model performance in offline and online set-
tings do not differ a lot for novel combinations and
novel objects. It questions us whether we should
rely on online continual learning algorithms to im-
prove generalization. Perhaps to improve general-
ization, we should find a corresponding algorithm
in the offline setting and modify it into the online
setting.

Simple baselines perform rather well. We
see the simple baselines like experience replay
achieve the best performance in reducing catas-
trophic forgetting. Actually, this finding is con-
firmed by recent papers. Probably we should in-
stead focus on which samples to store in the mem-
ory.

Generative Models are One of the Kernel Tech-
niques of Continual Learning. Generative mod-
els are naturally resistant to catastrophic forget-
ting as they can generate previously seen exam-
ples , which can be easily taken as pseudo training
data to train on. The state-of-the-art replay buffer
free continual learning algorithm Deep Genera-
tive Replay (DGR) (Shin et al., 2017) follows this
paradigm, which train a GAN simultaneously with
the classifier on the data stream to model the data
distribution. Hypernets can also be interpreted as
a generative model in that it generates parameters
of classifier instead of underlying data. The task
embedding in the Hypernets is very similar to the
latent variable in generative models such as Vari-
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Figure 5: Attribute prediction curve of Experience Replay algorithm in different replay buffer size settings

Imagenet features

Offline classifier features

ER
Hypernets
Hypernets + Glove

Hypernets w/o regularization
Offline

- 0.657
0.320 0.556
0.301 0.532

- 0.516

- 0.730

Table 1: Results on Hypernets based continual learning. Offline classifier features notes for classification over
ResNet features extracted from a trained classifier in offline setting for analytical purpose.

ational Auto Encoder (VAE). However, existing
Hypernet do not generate parameters in a way like
generative models, which typically requires a sam-
pling step such as VAE. It is possible that bayesian
generative models like VAE can GAN can be in-
tegrated into hypernets, which provides stronger
probabilistic interpretation of task-conditioned hy-
pernets, and further improve the quality of the
learned continuous task embedding.

4 Related Works

4.1 Continual Learning

Existing continual learning algorithm can be cate-
gorized into regularization based approaches and
replay buffer based approaches. Regularization
based approaches include Elastic Weight Consoli-
dation (EWC) (Kirkpatrick et al., 2017), Learning
without Forgetting (Li and Hoiem, 2017) (LwWF),
etc. Deep Generative Replay (DGR) based ap-
proches also belong to this category as they do
not store prior input examples, However, accord-
ing to empirical evaluation, the performance gain
of regularization based approaches are limited ex-
cept DGR. Replay buffer based continual learn-
ing algorithms has shown strong performance. ER
and GEM are popular algorithms that fall in this
category. Multiple findings of (Chaudhry et al.,
2019b; Hsu et al., 2018) show that ER approach

is simple yet very effective. Meta Experience Re-
play (Riemer et al., 2019) considers the implicit
connection between the first order meta-learning
algorithm Reptile (Nichol et al., 2018) and dot
product maximization between gradients, and runs
Reptile algorithm on the examples in the replay
buffer at each iteration.

Most of the prior works assume knowing the
current task identities, or even knowing the num-
ber of the tasks beforehand. Some approaches
use a ring buffer (Lopez-Paz and Ranzato, 2017),
which allocate a fix memory per class per task, and
store examples in a FIFO manner. However, in
more practical scenarios, the identity of the tasks
may be not known. Some approaches therefore
run online k-mean algorithm over the feature out-
puts right before the classification layer (Aljundi
et al., 2019), and store k£ examples that has the
closest feature representation to k centroids re-
spectively. The algorithm can be understood
as storing prototype examples into the memory.
However, the performance is degraded where the
examples for different tasks are different by a
large magnitude. Other approaches include gradi-
ent based sample selection (Aljundi et al., 2019),
which maximize the diversity of examples stored
in the replay buffer according to their gradients,
either by solving an optimization problem or by
greedy approximation. (Aljundi et al., 2019) show



that the gradient based sample selection is most-
effective. (Chaudhry et al., 2019b) show cluster-
based sample selection performs promisingly.

4.2 Concept Learning from Visual Data

The general goal of learning concepts from visual
data has been explored with different tasks. Phrase
grounding (Chen et al., 2018) is task where the
model predict a bounding box from the input im-
age that is referred to by the phrase. There exists
prior work on weakly-supervised phrase ground-
ing, where the model is only trained with im-
age and phrase (or caption) pairs, without any
bounding box annotations. Visual Question An-
swering is also interpreted as learning visual con-
cepts (Mao et al., 2019), where the model learns
nouns (shapes), adjectives (colors), and sentence
parsing without parsing annotations.

4.3 Compositional Generalization

While in current experiments we only focused on
evaluation of compositional generalization ability
of model without explicitly tacking the problem,
we regard this ability being relevant as it is one
of importance abilities that even state-of-the-art
models do not perform satisfactorily but is easy
to humans. Existing research on compositional
generalization has been studied without the con-
text of continual learning. There are two major
down stream tasks to measure compositional gen-
eralization. The first line of work is attribute-
object classification. The models are usually de-
signed to compose separate classifier of objects
and attributes (Misra et al., 2017; Purushwalkam
et al., 2019). The second line of works is compo-
sitional image captioning (Mao et al., 2015; Niko-
laus et al., 2019).

5 Conclusion

In this project, we studied the problem of visu-
ally grounded concept learning from streaming
data. We showed replay buffer based approaches
performs the best in handling catastrophic forget-
ting, and the promising performance of hyper-
nets for continual learning. We propose to ini-
tialize task embeddings as pretrained word em-
beddings to better capture task similarity, but at
current timestep we did not get positive results.
The experimental results on color prediction on
novel combination also implies the inherent chal-
lenge of compositional generation, even in batch

learning setting. Further study will be done for
hypernets and compositional generalization. We
will also test our approaches in other downstream
tasks, such us image captioning.
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