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1 Introduction

When humans use their languages to communi-
cate with each other, they often rely on broad
implicit assumptions. Humans learn and use
this kind of assumptions in everyday life, which
makes their language concise without lacking pre-
cision. However, machines by nature don’t have
such background knowledge. Machine learning
models can’t accumulate human’s commonsense
through interacting with the environment. There-
fore, empowering Natural Language Processing
(NLP) techniques with commonsense knowledge
is one of the major long-term goals for Artificial
Intelligence (AI).

Question Answering (QA) is a Natural Lan-
guage Understanding (NLU) task requiring both
language processing and knowledge reasoning.
When commonsense knowledge outside the given
text is needed to answer the question, the task
is called Commonsense Question Answering.
Therefore, the main focus of the commonsense
question answering task is how to incorporate
commonsense knowledge and conduct reasoning.

2 Resources

In this section, we introduce some recent represen-
tative datasets and knowledge resources. We can’t
cover all of them due to limited space.

2.1 Datasets

Created by Zellers et al. (2018), SWAG contains
113k multiple choice questions. Given a partial
description, the task is to select the most prob-
able next action. Commonsense QA (Talmor
et al., 2018) contains 12k multiple choice ques-
tions asking for a target concept from Concept-
Net (Speer et al., 2017). CODAH (Chen et al.,
2019) is adversarially-constructed with 2.8k mul-
tiple choice questions that make pretrained models

struggle to answer.

2.2 Commonsense Knowledge
Commonsense knowledge is mainly available in
two forms. One is unstructured large-scale cor-
pora, which implicitly encodes human’s world
knowledge. Vast numbers of corpora like
Wikipedia for training large scale language mod-
els can be leveraged. The other is structured
knowledge graphs (bases). For example, Con-
ceptNet (Speer et al., 2017) is a knowledge graph
whose nodes are concepts in the form of words or
phrases and edges are relations between connected
nodes. Atomic (Sap et al., 2019) is a knowledge
graph about events and their if-then relations.

3 Approaches Overview

Popular and effective approaches can be easily
found on the leaderboard of each task. Approaches
can be categorized into two classes: (1) data-
centric (2) model-centric.

Data-centric methods assume knowledge can
directly learned from large copora in an unsu-
pervised way. For example, simply finetuing
RoBERTa (Liu et al., 2019) on the commonsense
QA dataset can beat many carefully-designed
models. Some work (Zhang et al., 2019) also tries
to incorporate entity knowledge into the training
phase of the model. These methods want to use
pretrained language models (e.g. BERT (Devlin
et al., 2018), XLNet (Yang et al., 2019), RoBERTa
(Liu et al., 2019)) as an unified knowledge encoder
to solve the question answering task. While they
have continuously set new records on various NLP
tasks by training with larger corpora and more ad-
vanced hardware support as well as tuning tricks,
some analysis paper (Niven and Kao, 2019) argues
that they are proficient at memorizing facts and
finding “spurious statistical cues”, which are re-
sults of overfitting. What’s more, it’s believed that



the language model can not really do reasoning,
which limits its potential towards solving NLU
tasks that relys on reasoning.

Model-centric methods still rely on powerful
pretrained models to learn the language semantics.
The difference is that they extend the underlying
pretrained models with structures which are de-
signed to explicitly incorporate knowledge that are
helpful for specific tasks. The typical workflow is
as: A. encoding the input; B. extracting evidence;
C.reasoning over evidence. Pretrained language
models can be used as the input encoder. There-
fore, the main challenge here is how to extract rel-
evant evidence and how to perform reasoning over
the extracted evidence. We will introduce some
methods in the following sections.

4 Extracting Evidence

There are two main sources to extract knowledge:
plain text and knowledge graph. Chen et al. (2017)
propose DrQA which consists of a document re-
triever and a document reader to locate and incor-
porate helpful knowledge in the Wikipedia. Many
knowledge-augmented works (Bauer et al., 2018;
Lin et al., 2019) directly use a knowledge graph in
the related domain. Lv et al. (2019) extract helpful
knowledge from both ConceptNet and Wikipedia.
While text data like Wikipeida is has high cov-
erage, structured data like knowledge graph can
provide relation information which is necessary
for knowledge reasoning. Therefore, it’s helpful
to have a combined knowledge sources of plain
text and knowledge graphs. Plain text may help
alleviate the low coverage problem of the knowl-
edge graph and improve concept grounding or en-
tity linking.

Given the knowledge source and input, the next
step is to extract related knowledge. Here we fo-
cus on the knowledge graph cases, and the task
is called concept grounding or entity linking ac-
cording to the node type. This part is usually
not claimed as a contribution by commonsense
QA papers. They usually use off-the-shelf tools
(e.g. entity linker) or develop simple string match-
ing rules to identify matched entities/concepts on
the knowledge graph. After locating these “root”
nodes, an extractive way to get the evidence graph
is to construct a subgraph covering all “root”
nodes. However, finding the minimal spanning
subgraph is a NP-complete problem. Therefore,
researchers develop heuristics (Lv et al., 2019;

Lin et al., 2019) for graph construction or formu-
late the path finding problem as an optimization
problem which can be efficiently solved. There
isn’t a comprehensive study on how the quality of
the extracted graph affects the final performance.
(Lin et al. (2019) find path pruning to be helpful.)
Heuristic algorithms prove to work in some pa-
pers while the potential of optimization-based al-
gorithms is still not clear. Another method is to
construct the evidence graph in a generative way,
which hasn’t been studied to the best of our knowl-
edge. The advantage is that it can capture the se-
mantic meaning of edges in a more flexible way as
well as avoid running selection algorithms on the
huge knowledge graph.

5 Reasoning over Evidence

After we have an evidence graph, the next step
is to reason over it, which corresponds to mes-
sage passing in Graph Neural Networks (GNNs).
Therefore, many GNN variants (Wu et al., 2019;
Zhou et al., 2018) can be adopted for reason-
ing. Marcheggiani and Titov (2017); Zhang et al.
(2018) find that Relational-GCN (Schlichtkrull
et al., 2018) tends to over-parameterize the model.
(Lv et al., 2019; Lin et al., 2019) both use GCNs
on the undirected graph while Lin et al. (2019)
propose an additional LSTM-based path encoder.
The lesson here is that we should not only use
symbolic knowledge from the graph, but also
leverage semantic clues from the input sequence.
Xiao et al. (2019) propose Dynamically Fused
Graph Network to deal with constructed graph,
which is similar to the setting of generative graph
construction. It also shows that entity-level rea-
soning and token-level contexts are both important
for question answering. For these graph neural
networks, the attention mechanism is usually help-
ful for feature aggregation as well as interpreting
the results and debugging.

6 Conclusion

In this paper, we review typical resources and ap-
proaches for commonsense question answering.
Note that techniques for commonsense QA also
closely relate to broader fields like general ques-
tion answering, subgraph selection, graph reason-
ing and graph embedding. Those papers should
also be referenced when doing research. Those
papers should also be referenced when doing re-
search.
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