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Abstract

Many people try to become aware of the im-
portant events happening in the world through
reading news articles. Many of the big events
and decisions, directly or indirectly affects our
lives, so it is important to know about them and
make reactions if we think it is needed. Un-
fortunately most of the news sources are po-
litically biased and they convey the news in
a way to give the reader an opinion close to
themselves. Our work gets the word embed-
ding for each of the sides corpora and aligns
the two embeddings. With aligning of the em-
bedding spaces we can compare the vectors
and use metrics to show the bias between the
left-sided and right-sided news sources.

1 Related Works

Some work have been done focusing on the
evolvement of temrs during time. In a work
by Garg et al., they integrate word embeddings
trained on 100 years of text data with the US Cen-
sus and develop metrics based on word embed-
dings to characterize how gender stereotypes and
attitudes toward ethnic minorities in the United
States evolved during the 20th and 21st centuries
starting from 1910 (Garg et al., 2018). They
compute the average embedding distance between
words that represent womene.g., she, female and
a group of gender neutral words like occupations,
also compute the average embedding distance be-
tween words that represent men and the same oc-
cupation words. They have used the intuitive and
natural metric for the embedding bias which is
the average distance for women minus the aver-
age distance for men A group of works concentrate
on the evolving of word semantics during time.
They have captured interesting biases looking at
the metrics in different years. There is no embed-
ding alignment in their work, they get the static
word embedding for each year and calculate the

metrics for that year and show the gradual change
of numbers in plots. The data and code related
to their paper are available on GitHub 1. Using
the similar idea for our work we need to get two
set of words representing each of political sides
and also a set of political neutral interesting words.
Finding those sets of words that are also frequent
in our dataset is challenging. Another drawback
is that calculating euclidean differences in embed-
ding spaces is not a very robust metric.

Some of the related works are focusing on bilin-
gual word embedding which builds semantic em-
beddings associated across two languages. The
work of (Zou et al., 2013) introduces an unsuper-
vised neural model to learn bilingual semantic em-
bedding. The result of this work might not be very
interesting for our task because it embeds our two
different set of corpus (left and right) in a way that
the corresponding words that have the same mean-
ings will end up very close in the vector space.
Another disadvantage of this method is its slow-
ness; it took 19 days for their model to train on
a 8-core system. This paper is old and they have
compared their methods like naive and pruned tf-
idf and we don’t have comparison of it with con-
temporary state of the art models.

We want to be able to separately embed the
words from the corpora corresponding to each of
the right and the left side news sources and then
align the vector spaces. The work of (Hamilton
et al., 2016) use orthogonal Procrustes in order to
align word embeddings across time-periods. This
method searches for the best rotational alignment
and preserves cosine similarities. They use two
measures to evaluate their results: synchronic ac-
curacy (i.e., ability to capture word similarity) and
diachronic validity (i.e., ability to quantify seman-
tic changes over time) which they do in two ways:

1https:// github.com/nikhgarg/EmbeddingDynamicStereotypes
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detecting known shifts and also discovering shifts
from data. This method can be applied to our prob-
lem because we are trying to find the alignment
between embeddings of left-wing news corpora
and right-wing news corpora. We also can look
at the embeddings of all news corpora during time
spans and another interesting question is whether
the similarity of the words changes over time in
compare to left terms and right terms. A draw-
back of their method can be that they only look at
rotational alignment and don’t capture the changes
in the cosine similarities between the words. They
have their code available on github.2

Later than Hamilton’s work, there is another
work(Yao et al., 2018) that instead of aligning
different static embeddings simultaneously learns
time-aware embeddings. Previous techniques usu-
ally do not consider temporal factors, and assume
that the word is static across time. They are in-
terested in computing time-aware embedding of
words. They have used qualitative and quantita-
tive methods to evaluate temporal embeddings for
evolving word semantics. Their work can be mod-
ified for our problem setting to obtain political-
aware embeddings.
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