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1 Related Work

Both structured knowledge stored in a knowledge
base and unstructured text from large web corpus
proved to be valuable sources for question answer-
ing. Whether structured knowledge or unstruc-
tured text plays a dominant role in solving the QA
problems mainly depends on the specific scenar-
ios. For answering KB-based QA problems, i.e.,
questions concerning attributes of the entities, a
large number of works dedicate efforts in the field
of KBQA. Typically, this line of approaches re-
quire understanding the questions in natural lan-
guage and translate them into KB queries either
in formal SQL language (Berant et al., 2013; Cai
and Yates, 2013; Kwiatkowski et al., 2013) or
latent representation (Bordes et al., 2014; Dong
et al., 2015; Yih et al., 2015) for searching plau-
sible entities on KB as answers. For answering
text-based QA problems, i.e., questions asking for
text-span as answers, works in this field majorly
fall in the reading comprehension-style (Seo et al.,
2016; Shen et al., 2017; Yu et al., 2018). These
approaches need to identify answers span either
from some given articles or open-domain docu-
ments. Still, it could happen that in either scenario,
relying on a single source might not be sufficient
to solve the problem completely. On the one hand,
KB is known to be extremely incomplete and usu-
ally facts in KB fail to cover the knowledge neces-
sary for some QA datasets. On the other hand,
while having high coverage, text could lead to
more difficulties for locating the answers due to its
unstructured nature. Therefore, a certain number
of works began to look into methods which lever-
age both sources to conduct QA tasks. According
to how the knowledge from both sizes cooperates,
we list out three categories of these works which
1) supplement inference over KB with text, 2) sup-
plement inference over text with KB, or 3) fusing

knowledge from KB and text jointly.

1.1 Text to KB

In order to address the incompleteness of KB,
several works augment their models with exter-
nal evidence from text data. For some of them,
text is only used as additional feature to en-
hance the inference over KB (Krishnamurthy and
Mitchell, 2012; Reddy et al., 2014; Choi et al.,
2015; Savenkov and Agichtein, 2016; Lin et al.,
2019). They utilize external text to better under-
stand the questions as well as enrich the features
for candidate answers. Recent work (Fu et al.,
2019) also make use of corpus for extracting new
facts to complete KB during inference.

As methoned above, these methods are better at
compositional reasoning over KB which unstruc-
tured text do not support (Das et al., 2017), and
are greatly improved when enhanced by text ev-
idence. However, when faced with more open-
domain questions, evidence from text might be
more useful and should serve as the main contri-
bution instead of a complementing role. More-
over, they neglect the other side where structured
knowledge could help inference over text.

1.2 KB to Text

There also exist some works investigating the re-
verse direction, i.e., leveraging KB to improve in-
ference over text. For example, the work in Sun
et al. 2015 links each candidate answer in search
text to the entities in KB in order to get their se-
mantic feature. Further, Xiong et al. 2019 em-
ploys gating mechanism to incorporate necessary
strucutred knowledge to better encode questions
and passages.

While these methods make up the shortage of
KB-oriented counterparts, the obvious limitation
is that the factoid knowledge in KB is not con-
sulted to obtain answers directly. Likewise, they



also omit the possible benefits brought by the text-
to-KB line of approaches.

1.3 Fusing KB and Text

Limited attention is drawn to exploit evidence
from KB and text jointly for integral reasoning.
Early works utilizing both sources adopt a late
fusion strategy. They either aggregate predic-
tions which are grounded independently from each
size (Ferrucci et al., 2010; Baudiš, 2015), or sim-
ply unify structured and unstructured knowledge
with universal schema and feed them to memory
network as input. As pointed out by Sun et al.
2018, this strategy is sub-optimal, as models have
limited ability to aggregate evidence across the
different sources and ignore the rich inter rela-
tions between both sizes. To bridge these gaps,
Sun et al. 2018 adopts an early fusion strategy in-
stead. They firstly construct a question subgraph
to incorporate both KB and corpus via entity links.
Then they propose heterogeneous update rules to
fuse knowledge from different nodes. Lv et al.
2019 adopts a similar strategy to construct a graph
from both sources but their method to fuse the het-
erogeneous knowledge is twisted. Firstly, nodes
from both sizes are presorted as sequences and
concatenated into one single input of a language
model which generates a sequence representation.
Then graph neural networks are used to generate
representation for the whole graph. Finally, both
the sequence and graph representations are used
to compute the prediction score.

To some extent, these works step further to ex-
ploit both KB and text in a more unified way than
the works introduced in the previous two subsec-
tions do. Therefore, evidence from both sizes
could be considered jointly to better answer the
question of any kind. Still, they emphasize more
on relying question to select useful evidence from
KB and text. The interaction of both sizes is ful-
fill only by knowledge fusion. Possible guidance
from one size to encode the other size is not ex-
plicitly investigated.
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