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1 Introduction

Deep neural networks have achieved impressive
performance on multiple natural language pro-
cessing tasks by learning complicated composi-
tion rules of words and phrases. LSTM (Hochre-
iter and Schmidhuber, 1997) and Transform-
ers (Vaswani et al., 2017) are popular networks
for modeling language, capturing human-like se-
mantics especially when pretrained on large cor-
pora (Devlin et al., 2018; Peters et al., 2018).
However, it is non-trivial to understand how
atomic words and their compositions contribute to
the final results, leaving these models as “black
boxes”.

Recently, researchers study post-hoc explana-
tion methods to explain neural networks with-
out modifying the inner structure. Additive fea-
ture attribution methods (Lundberg and Lee, 2017;
Ribeiro et al., 2016; Binder et al., 2016; Shriku-
mar et al., 2017) regard the model prediction as
a weighted sum of contributions of input words
and divide the effort of the final prediction to each
atomic word. Another line is based on input oc-
clusion (Kádár et al., 2017), which masks a word
or phrase in an example and observes the change
in the prediction. Although the algorithms explain
which words and phrases are important to one spe-
cific prediction, these explanations provide limited
insights on how the model handles complicated se-
mantics like stress or negation, and how the atomic
words and phrases interact and compose into high-
level semantics. Contextual decomposition (Mur-
doch et al., 2018) is a recently proposed expla-
nation method which tackles the challenge above.
The algorithm computes individual contributions
of words and phrases by decomposing outputs of
each layer in the neural network. With the help
of extracted individual contributions of phrases, it
is possible to explain compositionality in seman-

tics with simple strategies. For example, by cal-
culating individual contributions for each node on
a parsing tree of the input sentence, it can be ex-
plained how the model composes semantics of the
root from subtrees and leaves.

However, contextual decomposition actually
follows heuristics on calculating individual con-
tributions of phrases. A formal definition of in-
dividual contributions, which is a crucial concept
in the algorithm, is not provided mathematically.
This leads to heuristic designs in some critical de-
composition steps in the algorithm. (Singh et al.,
2018) find that original contextual decomposition
does not perform well on deeper neural networks,
and modified it again with heuristics. In contrast,
we will provide a formal way to quantify individ-
ual contributions of phrases.

2 Related Works

In this section, we discuss related works on post-
hoc neural network explanations. (Guidotti et al.,
2018) categorize explanation methods into global
explanation methods, local explanation methods,
and model inspection methods. We focus our dis-
cussion on global and local explanation methods.

Global explanation methods include fitting tar-
get black boxes with self-interpretable models
such as trees (Craven and Shavlik, 1996; Krish-
nan et al., 1999), or assessing what training fea-
tures the model regards as most significant (Vi-
dovic et al., 2016; Doshi-Velez and Kim, 2017;
Sonnenburg et al., 2008). (Zien et al., 2009)
proposed Feature Importance Ranking Measure
(FIRM), which was later generalized by (Vidovic
et al., 2016) into Measure of Feature Importance
(MFI) score to identify important pixels and k-
mers for image and genome classification tasks.
Given a subset of the dataset, the feature impor-
tance is calculated as the average prediction score
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for each example containing that feature. Unfor-
tunately, the sparsity of an expression in natural
language makes it infeasible for natural language
processing tasks.

Local explanation methods provide explana-
tions that are specific to an example. Input oc-
clusion based methods calculate the contribution
of a phrase as the difference between the predic-
tion of the original input and that of the masked
input. The phrases are either omitted (Kádár
et al., 2017), or padded to a reference value (Li
et al., 2016). Another family of local explana-
tion methods is additive feature attribution meth-
ods (Lundberg and Lee, 2017), where the final
prediction is divided additively to each atomic
word. LIME (Ribeiro et al., 2016) fits a local lin-
ear model directly around a data point. Layer-
wise relevance back-propagation (LRP) (Binder
et al., 2016) and DeepLIFT (Shrikumar et al.,
2017) back-propagates activation differences from
outputs layer to input layers to assign contri-
bution scores for inputs. Gradient based (Si-
monyan et al., 2013; Hechtlinger, 2016; Denil
et al., 2014; Ancona et al., 2017) and integrated
gradient based (Sundararajan et al., 2017) methods
evaluate feature importance with output gradients
or the integrated gradients from a reference input
with respect to input features. (Lundberg and Lee,
2017) unified the additive feature attribution ap-
proaches above with a Shapley value assignment
based framework.
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